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Abstract  
 
Innovation variables exhibit high rates of unobservability, often leading empirical studies to 
exclude firms that fail to report innovation. We assess the reliability of six methods for dealing with 
unobserved innovation using several different counterfactuals for firms without R&D or patents. 
These tests reveal that deleting firms without reported innovation or imputing them as zero 
innovators and including a dummy variable leads to biased parameter estimates for reported 
innovation and other explanatory variables. Deleting or ignoring firms without patents is especially 
problematic, leading to false-positive results in empirical tests. Our analysis suggests using both 
multiple imputation and instrumental variable estimates.  
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1. Introduction 

Investors and academics exhibit substantial interest in understanding how corporate 

innovation influences firm growth and performance (Hochberg et al., 2018). Empirical studies 

typically use patents or R&D expenditures to measure firm innovation, often focusing on 

innovation as a variable of interest (e.g., Croce et al., 2018) or as a control variable (e.g., Huang, 

2018). A well-known problem in this cross-disciplinary body of research is that most firms do not 

report their R&D spending nor obtain patents (Anton and Yao, 2004; Koh, Reeb, and Zhao, 

2018). For instance, over 50% of US firms do not report their R&D spending and among firms 

with positive R&D for over a decade, roughly 60% of them do not obtain patents. Potential 

explanations for not reporting R&D or obtaining patents include negligible innovation inputs, 

unsuccessful innovation projects, or attempts to keep the innovation information secret (Png, 2017). 

Recent studies develop additional measures of corporate innovation, ranging from textual analysis 

in financial analysts reports (Bellstam et al., 2020) to firm disclosures of new products (Mukerjee et 

al., 2017). These new measures provide thoughtful approaches to capture different aspects of 

innovation, but typically suffer from the same concerns of truncation bias noted by Lerner and 

Seru (2017) regarding patents.  

Recognizing that most firms fail to report R&D expenditures or seek patents, empirical 

researchers use a variety of methods to handle unreported innovation. The two most common 

approaches to dealing with this issue are excluding firms without R&D or patents (e.g., Hombert 

and Matray, 2018) or classifying these firms as zero innovators and including a dummy variable as 

suggested by Koh and Reeb (2015) (e.g., Masulis and Zhang, 2019). Are these the right approaches 

to handling unreported innovation?  

Our analysis focuses on how these common methods for dealing with missing innovation 

data influence the economic conclusions in empirical finance research. To address this issue, we 
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investigate the reliability of different methods for handling unreported innovation in studies that 

focus on innovation as either an explanatory variable of interest or include it as a control variable. 

We compare six approaches to handling unreported innovation: Listwise deleting (discarding) firms 

without R&D or patents, deterministic imputation with either zero or industry average, inverse 

probability weighting, Heckman selection, and multiple imputation. Multiple imputation is 

arguably the least common method in corporate finance and relies on estimating the missing 

variable of interest using other observable covariates and explicitly adjusting for imputation 

uncertainty (see Internet Appendix I). 

Our preliminary analysis reveals that firms with unreported innovation (R&D or patents) 

are predictable with known determinants of innovation and other corporate outcomes of interest, 

rejecting the hypothesis that unobservable innovation is missing completely at random.1 These results 

raise the concern that the commonly used methods to handle unreported innovation could lead to 

biased parameter estimates due to the non-representatives of the population under study (deletion) 

or distortions of the variance-covariance matrix (deterministic imputation).  

Our empirical tests focus on two common measures of corporate innovation, namely R&D 

spending and patents (whether based on counts, citations, or market reactions). Firms without 

reported R&D could arise from a lack of R&D spending or a disclosure choice of the firm. 

Similarly, zero patents firms could stem from failed innovation projects, trade-secret based 

reporting choices, or from firms seeking regulatory protection in different jurisdictions. Each of 

these different types of missingness allows for differing tests of the different approaches to handling 

unreported innovation. Our empirical analysis focuses on both R&D and patents.  

 
1 Terminology in statistics differentiates between three types of missing data. Missing Completely at Random (MCAR) 
occurs when neither observables nor unobservables predict missing observations. Missing at Random (MAR) occurs 
when observables can predict missing observations and Missing Not at Random (MNAR) occurs when missing 
observations are related to observable and unobservable data (see Section 2 and Internet Appendix II for details).  
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We test the methods to handling firms without reported R&D in two ways. First, we use 

data on US firms that did not report R&D spending in a particular period but reported the amount 

in subsequent financial statements. As firms that initiate the reporting of R&D expenditures are 

required to report their R&D expenditures for prior years, we can directly compare several 

common treatments for missing R&D in the prior years. To the empiricist these firms do not 

appear to engage in R&D activity in the years R&D spending was not reported, creating a natural 

laboratory to evaluate different methods of handling unreported innovation. We denote this newly 

reported R&D spending in future financial statements as “Recovered R&D.” Using recovered R&D 

as a baseline, we compare the observed/counterfactual R&D with replacing these firms’ missing 

R&D with zero, the industry average, and multiple imputation. Further tests show that the R&D 

in firms with unreported R&D significantly differ from zero R&D firms, the average industry R&D, 

and positive R&D firms in aggregate. Notably, we find that on average multiple imputation gives 

estimates of R&D for the missing R&D data that is qualitatively similar (not statistically different) 

to their actual R&D reported in subsequent financial statements. 

One potential issue with using recovered R&D to compare treatments for unreported 

observations is that these firms may differ from other firms that do not report innovation in the 

Compustat universe. To address this concern, we use an alternative counterfactual group based on 

the textual analysis measure of innovation. Specifically, we use the text-based ranking of corporate 

innovation in the S&P 500 firms from Bellstam et al. (2020). These analysts’ discussions about 

corporate innovation likely only arise in firms that engaged in R&D. Again, we find that multiple 

imputation is the best solution to handle missing R&D in this alternative counter-factual group.  

Figure 1 shows the dramatically different innovation rankings of S&P 500 firms when using 

reported R&D and the textual analysis of Bellstam et al. (2020). The standard practice of classifying 

firms that fail to report R&D (or patents) as zero innovators leads to a large clumping of firms at 
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the bottom of the distribution. In contrast, the textual analysis approach, while only viable for a 

subset of firms, provides a more complete distribution of corporate innovation. Similarly, the 

multiple imputation approach to handling unreported R&D also mitigates the clumping problem 

inherent with deleting these firms or classifying them as zero innovators. Still, our results so far are 

based on recovered R&D and firms with analysts’ coverage, which may differ from other firms 

with unreported innovation.  

To further mitigate external validity concerns from the two different counter-factuals of 

R&D, we undertake two simulation studies. In the first simulation analysis, we use the empirical 

distribution of US Compustat data to evaluate the impact of differing levels of missingness of an 

innovation variable. This simulation approach approximates the analyses typically found in 

empirical studies of corporate innovation using panel data. The second simulation analysis uses 

clearly specified data generating processes, allowing us to gauge the impact of unreported 

innovation in a controlled, cross-sectional setting. This approach mitigates concerns about the 

comparability of the data on US firms in our first simulation with the data used in other studies. In 

both simulation exercises, we evaluate the six different approaches noted previously to handle 

unreported innovation. Our simulation analyses rely on two evaluation criteria: The bias 

(expressed as a proportion of the benchmark coefficient) and the root mean squared error (RSME) 

of the regression coefficient estimates. We evaluate the coefficient estimates on both the innovation 

variable (e.g., R&D or patents) and other control variables.  

In both simulations, we find that deleting or excluding firms with unreported R&D leads 

to biased coefficient estimates for both R&D and any control variables correlated with R&D. 

Rather than providing a conservative approach, the deletion of firms without reported R&D is one 

of the worst methods for handling unreported innovation. For instance, if R&D is missing at random, 

then the average bias from excluding firms without reported R&D is almost ten times greater than 
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found using multiple imputation. Moreover, our analyses show that commonly used deterministic 

imputation models (e.g., replace missing R&D with zero or industry average and include a dummy 

variable) fare poorly in comparison to multiple imputation. In addition, we find that the RMSEs 

of the common methods for handling missing innovation are very large in comparison to multiple 

imputation in both simulation exercises (i.e. 70% larger). We also find that the bias and RMSE 

from deleting firms without observable innovation dramatically increase at higher rates of 

missingness. This simulation result suggests the high rate of unreported innovation in patents, 

relative to R&D spending, makes deletion especially challenging in studies focusing on patent-

based metrics.  

To illustrate the economic magnitude of inference problems with common approaches to 

handling unreported innovation, we replicate an influential finance study that uses R&D spending. 

Fama and French (2002) test the empirical predictions of the pecking order and trade-off models 

of capital structure and classify firms without reported R&D expenditure as zero R&D firms. We 

find that the coefficient estimates and standard errors for R&D and capital structure are 

significantly different when using multiple imputation to account for unreported innovation 

relative to the results when classifying these firms as zero innovators. Strikingly, under multiple 

imputation both R&D and market-to-book have positive coefficients, providing evidence consistent 

with pecking order theory predictions rather than the conflicting results reported in Fama and 

French (2002). We cannot categorically state which results are correct, but we do note that different 

approaches to handling missing R&D give opposing results, suggesting this is an important 

consideration in research design. The approach with the least bias and RMSE gives consistent 

results across different versions of this test. Studies that use corporate innovation variables should 

explicitly evaluate the appropriateness of the how they handle unreported innovation.   
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So far, our empirical analysis primarily concentrates on unreported R&D spending. Yet, 

patents from the United States Patent Office (USPTO) provide another common approach to 

measuring corporate innovation. The vast majority of US firms do not seek USPTO patents, which 

stems from limited innovation success, trade-secret choices, and firms that only seek patent 

protection outside the US. To evaluate different methods of handling firms without patents, we use 

new product announcements as the ground truth. We assume that firms have successful innovation 

when they make new product announcements, especially for major new product announcements. 

Yet, firms without patents tend to have fewer new product announcements than USPTO patenting 

firms. Consequently, classifying these firms as zero innovators, imputing them with the industry 

average number of patents, or deleting firms without patents is problematic. The multiple 

imputation estimates appear to place these non-patenting firms into the appropriate innovation 

categories.  

Our final test focuses on firms without USPTO patents. The vast majority of patent-based 

empirical studies in the US rely on USPTO patents to measure innovation success. Among US 

firms, 69% of positive R&D firms never file for patents using USPTO data, while only 43% never 

file patent applications using the 30 global patent offices. This 26% wedge in unobserved patents 

for studies using USPTO patents provides another opportunity to examine different methods of 

handling unobserved innovation. In this particular case the nature of the missingness likely differs 

from trade-secret based reasons, limiting external validity. Yet, a benefit of focusing on this 26% 

wedge is that we can directly evaluate different methods of handling unobserved innovation in a 

large number of empirical studies. Strikingly, we again find that multiple imputation provides 

much closer estimates for the patents unobserved by the empirical researcher relying on USPTO 

patents than in other commonly used replacement methods.  
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The nature of unreported innovation is unknown to the researcher. How we handle this 

missing data problem ultimately comes down to our assumptions about the mechanisms of 

missingness. Implicitly, researchers deciding how to handle missing innovation data are making 

assumptions about whether missingness can or cannot be predicted by observables. For instance, 

the IV solution to missing innovation data relies on the ability to find truly exogenous shocks to 

overcome the selection bias (see discussion in Jiang, 2017). MI assumes that missingness can be 

predicted with observables, which implicitly facilitates the estimation of the average treatment 

effect under MAR. Given that the assumptions underlying IV and MI are both likely to be violated 

to some degree, the choice between assuming MAR or MNAR depends on the bias of the IV and 

MI estimates. Collins, Schafer, and Kam (2001) demonstrates that in many realistic cases, an 

erroneous assumption about MAR often has limited impact on estimates and standard errors 

because covariates included in the imputation models are often correlated with unobservable 

determinants of missingness. Consequently, we recommend using both MI and IV estimates when 

confronted with missing innovation data. Rather than simply deleting the firms with missing data 

(Branstetter, et al., 2019) or designating them as zero innovators (e.g Koch, et al., 2020), our 

analysis provides a roadmap for future researchers to adopt when using any common innovation 

measure as a treatment variable of interest or as a conditioning variable.  

This study provides several insights and contributions to the innovation literature. First, 

studies on innovation should consider using several different approaches to handling unreported 

innovation (R&D and patents). In this context, we recommend that researchers provide some basic 

statistics for the degree or magnitude of the missing innovation data in their sample and how it 

relates to their key variable(s) of interest. Instead of simply deleting firms without patents, reported 

R&D, financial analysts’ coverage, or new product announcements, we should attempt to adjust 

for the non-randomness in missing innovation data. We advise against the common approach of 
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performing the main analysis by replacing missing R&D with zero (or industry average) and then 

repeating the tests after excluding these non-reporting firms as sensitivity analysis. Both 

deterministic imputation and listwise deletion of firms with unreported corporate innovation can 

provide biased coefficient estimates if the missingness is non-random, making it difficult to evaluate 

how well one biased approach can provide a robustness test for another biased approach. 

Second, this study contributes to the burgeoning work on the econometric challenges faced 

by researchers in finance. Bertrand, Duflo and Mullainathan (2004), Petersen (2009), and 

Thompson (2011) discuss methods to appropriately compute standard errors in the presence of 

cross-sectional and time-series dependence across residuals. Koh and Reeb (2015) compare two 

deterministic imputation methods and find that including a dummy variable for missing R&D firms 

improves imputing with zero or the industry average in their regressions. They are silent on the 

relative biasness of these two methods, and they do not evaluate excluding firms without reported 

R&D, multiple imputation, inverse probability weighting, or Heckman models. Our analysis shows 

that deterministic imputation solutions can lead to biased estimates and standard errors for both 

unreported R&D and patents, as well as other control variables. Importantly, our paper questions 

the foundations for deleting firms with unreported innovation (widely adopted in economics and 

finance) and the impact of using deterministic imputation models that classify these firms as zero 

innovation firms and including a dummy variable (frequently used by accounting and finance 

scholars). In addition, we show that the use of patent-based metrics, such as patent counts, citations, 

or market reactions, as alternative innovation measures does not resolve the unreported innovation 

problem. Instead, the problem of unobservable innovation is arguably more pronounced in studies 

that use patents to measure innovation than in ones using R&D expenditures, because of the higher 

rate of missingness in patents.  
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Third, studies that use R&D or patents as control variables also suffer from this missing 

data bias. Best practices for dealing with missing R&D and patents depend on the source or type 

of missing innovation data. If country, industry, or firm characteristics predict unreported R&D or 

missing patents (see Lerner and Seru, 2017), then our analysis suggests that using multiple 

imputation provides the most reasonable solution. Surprisingly, and across a wide variety of 

specifications and approaches, we find that both Heckman and inverse probability weighting rarely 

provide the best approaches to handling unreported innovation in our samples. For alternative 

data sets, researchers could consider undertaking simulations similar to ours to evaluate the various 

methods of handling unreported innovation. We provide our code for researchers interested in 

performing simulations on unreported innovation using their own unique data. 

 

2. Handling Missing Innovation Data 

There are numerous possible reasons for why we observe missing innovation data. Of 

course, unreported innovation could arise because the firm does not engage in innovation and has 

nothing to report. Unfortunately, the missingness mechanism cannot be positively identified from 

examining the observable data. Hence, as empiricists, we make either implicit or explicit 

assumptions about the missingness mechanism for firms without patents or R&D spending to draw 

inferences, which are separate from the statistical methods we use for parameter estimation. In 

general, missing data causes two problems: Bias in the parameter estimates and loss in efficiency 

(Rubin, 1976). Bias stems from the non-representativeness of the population under study. Loss of 

efficiency arises because information loss is a direct consequence of missing data, i.e. smaller 

samples.  

We focus on the assumptions underlying different practices for handling unreported 

innovation and consider the econometric implications of these common approaches when the 
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assumptions are violated. Research in statistics has long recognized and studied the broad class of 

missing data problems (e.g., Robins and Wang, 2000), while research in machine learning also 

focuses on training and testing data that suffers from missing observations (e.g., Grangier and 

Melvin, 2010). Yet, many of these techniques and methods are relatively unused in research on 

corporate innovation.  

To provide a framework for investigating unreported innovation, we consider the case 

where only one explanatory variable contains missing observations. Let !!  be the dependent 

variable and "! be the innovation variable with missingness. We have the linear relation:  

!! = $ + &"! +	(! ,				* = 1,… ,-.  (1) 

Let !! be a selection indicator where !! = 1, when %! is not missing and firm & is included in the 

regression. Otherwise, when !! = 0 firm & is deleted from the data. The validity of solutions to this 

problem depends on the missingness mechanism, thus we first present the three missing 

mechanisms. Rubin (1976) and Little and Rubin (2002) classify missing data mechanisms into 

Missing Completely at Random, Missing at Random, and Missing Not at Random. 

1. Missing completely at random (MCAR): The probability of missing can be 

formulated by: 

/(1 = 0|!, ") = /(1 = 0). 

This means that the missing probability does not depend on any random variables. 

2. Missing at random (MAR): The probability of missing can be formulated by: 

/(1 = 0|!, ", 5) = /(1 = 0|5, !). 

The probability of missingness only depends on the set of observed variables 5 and !, but not 

on the missing variable itself or unobservable characteristics.  
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3. Missing not at random (MNAR): The missing mechanism depends on the value of " 

itself or on unobserved variables, e.g., high-income individuals tend to not participate in 

surveys related to income.  

There are several potential mechanisms for missing innovation data, which likely differ 

between different measures of innovation. Missing R&D data could arise from firms seeking to 

avoid giving benchmark spending numbers to competitors, managerial decisions to create 

information asymmetry about their R&D intensity, a simple failure to report zero R&D, or 

difficulties in estimate R&D spending from the costs of goods sold. Unobservable innovation in 

patent data could arise from failed innovation projects, managerial decisions to facilitate private 

trading gains, firm attempts to keep detailed blueprints of their innovation out of the public 

domain, or because they focus on process rather than product innovation. Understanding the 

mechanism or the underlying reason for the missing innovation data is an especially important 

component in determining or assessing methods to handle the missing data. For instance, the 

Heckman selection approach requires the selection of an instrument based on the nature of the 

missingness.   

 

2.1. Common Approaches to Unreported Innovation  

One common approach to missing innovation data is to delete or exclude firms without 

R&D spending or patents. Listwise deletion only uses a subsample of observations, deleting firms 

or firm-years that contain missing values in the "-variable, in equation (1). This leads to estimating 

the following regression using a subsample of the data: 

!! =	1!$ + &1!"! +	1!(! , (2) 



	
	

12 

where 1!"!  is now the explanatory variable and 1!(! is the error term. The OLS (ordinary least 

squares) estimator is unbiased if 6(1!(!"!) = 0, which is by 6((!|"! , 1!) = 0. If data is Missing 

Completely at Random and "! is exogenous, then 6((!|"! , 1!) = 6((!|"!) = 0. Thus, deletion can lead 

to consistent estimates in the case of Missing Completely at Random. However, if the selection is driven 

by observed or even unobserved variables, then 6((!|"! , 1!) ≠ 0 in general because (!  can be 

correlated with 1! even if one controls for "!, leading to biased estimates produced by deletion. 

Thus, a preliminary test to consider the potential costs of deleting firms without observable 

innovation is to assess whether the missing data is correlated with key variables of interest.   

Another common approach to dealing with missing innovation data is to impute the 

missing observations using various methods, and then treat the resulting data as given for further 

analysis. Frequently used deterministic imputation methods impute the missing values with zeros 

(i.e. firms without R&D are considered as having zero innovation), with the industry average level 

of innovation, or with fitted values based on some pre-specified model. The validity of this method 

depends on whether the specified imputation models are correct. If the imputation model perfectly 

coincides with the missing mechanism, then the resulting coefficient estimate using the imputed 

sample is consistent. The misspecification of a deterministic imputation model can lead to biased 

estimates because of the distortion of the variance-covariance matrices. This provides testable 

implications for analyzing missing R&D and patents, namely whether firms with unreported 

innovation have positive values of R&D or patentable innovations.  

 

2.2. Alternative Methods for Handling Missing Innovation Data 

Two other approaches to handling missing data are also viable candidates for unreported 

innovation. Inverse probability weighting (IPW) relies on assigning different weights to observed 
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points depending on their probability of being observed. As this probability is unknown for 

unreported innovation, we can estimate it using binary choice models, such as logit or probit, or 

with a nonparametric model.  

The second approach is multiple imputation (MI). MI is essentially an iterative version of 

stochastic imputation, which aims at explicitly modeling the uncertainty/variability ignored by the 

deterministic imputation procedures. Instead of replacing with a single value (unrelated to other 

covariates/observed data), multiple imputation uses the (joint) distribution of the observed data to 

estimate the parameters of interest multiple times to capture the uncertainty/variability in the 

imputation procedure (see Internet Appendix I). MI methods and Heckman-type approaches to 

deal with unreported innovation arise from different assumptions about the nature of the missing 

data. In empirical studies, researchers face a tradeoff between the assumptions that underpin MI 

versus the assumptions about the exogeneity of the instruments used in Heckman models.  

In our analysis, we investigate the relative performance of deleting firms without observable 

R&D or patents, common deterministic imputation methods to replace unobservable R&D or 

patents with zero or industry mean, Heckman, inverse probability weighting, and multiple 

imputation as different approaches to handle unreported innovation. 

 

3. The Severity of Unreported Innovation 

3.1 Data and Sample 

The sample of patents is derived from the EPO-OECD-PATSTAT database. This 

database, also known as the EPO Worldwide Patent Statistical Database, contains a snapshot of 

the European Patent Office (EPO) master documentation database with worldwide coverage. It 

has more than 20 tables with bibliographic data, citations, and family links for about 70 million 

applications from more than 90 countries, including the EPO and the USPTO.  
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Our sample selection begins with the October 2013 version of the PATSTAT data. It 

contains 44,730,405 observations, including patentees who are individuals, governmental 

institution/universities, and companies for the sample period of 1999–2012.2 Our analysis relies 

on the registered names on the original patent applications, rather than the ultimate patent owners, 

to better capture the entities that performed the innovation activities. We merge the patent data 

with all publicly-listed firms in the Compustat North America and Compustat Global database for 

32 countries. Our matching algorithm consists of two main steps. First, we standardize patent 

assignee names and firm names, focusing on unifying suffixes and dampening the non-informative 

parts of firm names. Second, we apply multiple fuzzy string-matching techniques to identify the 

firm, if any, to which each patent belongs. We randomly selected firms to manually confirm the 

matching of patents to firms.  

We focus on countries with at least 100 publicly-listed firms (excluding Hungary, Iceland, 

and Ireland).3 Thus, our primary sample contains 29 countries: Australia, Austria, Belgium, Brazil, 

Canada, China, Denmark, Finland, France, Germany, Greece, Hong Kong, India, Israel, Italy, 

Japan, Korea, Malaysia, the Netherlands, New Zealand, Norway, Singapore, South Africa, Spain, 

Sweden, Switzerland, Taiwan, the UK, and the US. There are 30 patent offices in the sample 

because the EPO is a separate entity from each European country’s patent office; European firms 

sometimes patent in their home patent office and other times with the EPO. Our baseline sample 

includes 333,920 firm-year observations and 37,272 unique firms, of which 5,374 are cross-listed 

firms. All accounting variables are from Compustat (North America and Global) and are defined 

in Panel A of Table A1 in the Appendix.   

 
2 Our patent sample ends in 2012, because patents post 2012 may be affected by the truncation bias for citations. The 
truncation bias arises due to patents after 2012 not having enough time to receive citations and result in fewer citations 
in comparison to earlier patents (Hall et al., 2001). 
3 Relaxing this 100-firm constraint or using a 1,000-firm constraint leads to similar inferences (see Table IA1 in 
Internet Appendix III). 
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Panel A in Table 1 reports the basic descriptive statistics of our sample firms. Only 35% of 

the observations in our sample report any information on R&D. Of those reporting R&D 

expenditures (118,264), 93% report positive R&D with an average R&D expenditure of 8% of 

their total assets. 7% of firms report zero R&D. The 75th percentile of R&D expenditures captures 

firms where R&D equates to roughly 6% of total assets. In addition, the sample firms invested an 

average of 6% of total assets in capital expenditure. Firms have an average of 9 patent applications, 

4 patents granted, and 23 citations over the sample period.4 On average, firms are profitable with 

an average ROA (return on assets) of 1% (median of 5%) and are highly levered with median 

leverage of 52%. In our analysis, we focus on patent applications, as these capture the R&D activity 

happening around the firm, but find similar results using patents granted.  

We apply the Adaptive Lasso procedure to identify any additional variables to those in 

Table 1 that may be relevant for the prediction of unreported R&D. Following the innovation-

theory based work of Reeb and Zhao (2020), we use a ten-fold cross-validation and choose the two 

tuning parameters (lambda and gamma) to minimize the mean square error in the out-of-sample 

testing (Hui et al., 2015) to a set of 37 variables. Similarly to Reeb and Zhao (2020), the Lasso 

approach identifies total assets, stock liquidity, and industry patent intensity as relevant predictive 

variables for unreported R&D and total assets, stock liquidity, industry patent intensity, and R&D 

stock as relevant predictive variables for unreported patents.5 

 

3.2. Univariate Comparison  

 
4 The average time between filing a patent application and a patent being granted across different patent offices ranges 
between 2 and 4 years. 
5 In untabulated analysis, we also use stepwise regressions to identify the relevant predictive variables for unreported 
innovation. The obtained relevant predictive variables are the same as those identified using the Lasso approach. 
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To better gauge the severity of the missing data problem and the potential impact of 

deleting firms without reported innovation, we compare samples with and without these firms. 

Specifically, we evaluate the effects of deleting innovation measures by comparing two approaches: 

deleting all observations without both R&D and patent applications and deleting all observations 

without either R&D or patent applications. The first group comprises only observations that have 

both reported R&D expenditures and patent information. Our benchmark group comprises of 

observations that have either reported R&D expenditures or patent applications with any of the 30 

patent offices, R&D and patents. We conduct a univariate comparison under different samples.  

Panel B in Table 1 reports the univariate characteristics of the full sample (Column 1), the 

sample that reports only R&D (Column 2), the sample that reports only patents (Column 3), and 

the sample with both R&D and patents (Column 4). Panel B shows that deleting missing innovation 

data substantially reduces the number of observations and paints a very different picture in 

comparison to the full sample. The samples with reported R&D or patents have less than a third 

of the observations of the full sample. These subsamples have higher total assets than the full 

sample, while the rest of the variables are significantly lower (Columns 5 and 6). The R&D and 

patent-only sample consists of 53,456 observations. Total assets, Tobin’s Q, and sales growth are 

larger than those in the full sample, while the rest of the variables are smaller (Column 7). It is 

worth pointing out that ROA decreases by 400% from the full sample to the R&D and patenting 

sample. These results indicate that R&D and patenting are at least not missing completely at random 

and may depend on observables. 

 

3.3. Tests of the Deletion Assumptions 

Next, we evaluate the validity of the assumptions underlying the common practices of 

deleting missing innovation and replacement with zero. An example of an MCAR process (when 
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deletion of observations with innovation is valid) is one in which firms decide whether to report 

innovation based on coin flips. We test the underlying assumption behind deletion, where the 

estimates of interest are consistent, in two ways. First, we use the MCAR test of Little (1988) to 

investigate the missing-value pattern. Second, we study if unreported innovation is more prevalent 

across firms with certain firm characteristics, by examining the predictability of unreported 

innovation through regression analysis.  

Whether missing data is MCAR can be tested by investigating if there are significant 

differences between the means of different missing-value patterns across variables of interest. This 

is formalized by Little (1988), who implements the Chi-square test of MCAR for multivariate 

quantitative data. The test statistic takes a form similar to the likelihood-ratio statistic for 

multivariate normal data and is asymptotically 82 distributed under the null hypothesis that there 

are no differences between the means of different missing-value patterns. Rejection of the null 

provides evidence that the missing data are not MCAR.  

Table 2 reports Little’s MCAR test statistics for unreported R&D and the number of 

patents with different covariates. All p-values for various specifications are smaller than 0.01 with 

the 82 statistic ranging between 297 and 22,889 for both the global and US sample, rejecting the 

null hypothesis that unreported R&D and non-patenting firms are unpredictable. The test provides 

strong evidence that unreported innovation is not MCAR. 

 

3.3.1 Predicting Missing Innovation 
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Next, we investigate whether the observed variation in unreported R&D and patents at the 

firm-year level is systematically related to firm characteristics. 6  We assess the existence of 

identifiable patterns in unreported innovation by conducting a regression analysis of unreported 

innovation on observable firm characteristics at the firm-year level for international and US firms. 

The chosen characteristics are based on innovation theory and the Lasso approach described 

above. Note that these tests do not seek to establish causality, but rather to emphasize association 

and predictability in the variation in unreported innovation to shed light on the nature of 

missingness in innovation. We estimate a panel regression model with year, industry, and country 

fixed effects, separately for unreported R&D and patents. 7  

In Table 3, the dependent variable is unreported R&D, which is equal to 1 when R&D is 

not reported and zero otherwise. For all firms, firm characteristics with country, industry, and year 

fixed effects explain up to 38% of the variation in unreported R&D (Column 3 of Table 3). Firm 

characteristics with firm and year fixed effects explain 81% of the variation in unreported R&D 

(Column 4). Unreported R&D increases at the firm level with property, plant and equipment (PPE) 

investment, ROA and sales growth, while it decreases with total assets, stock liquidity, and industry 

patent intensity. For US firms (Columns 5-7), industry and year fixed effects explain 53% of the 

variation in unreported R&D, while firm and year fixed effects explain 93% of this variation. 

Unreported R&D increases with PPE, ROA, and leverage, while it decreases with industry patent 

intensity for US firms.  

 
6 Cross-country regressions show that percentage of firms with unreported R&D and patents is predictable with 
macroeconomic variables, including economic openness, manufacturing intensity, government subsidies, labor 
regulations, intellectual property rights, university ties, skilled labor, honesty, regulatory efficacy, and Commonwealth 
countries.  
7 We report the results using least square estimation because it allows us to easily incorporate multi-level fixed effects. 
We also estimate the determinants of unreported innovation using binary choice models, logit and probit, with various 
specifications of fixed effects. The results remain qualitatively the same and are available upon request. 
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Table 4 presents the prediction results for unreported patents, which is set equal to 1 when 

a firm does not file for a USPTO patent in a given year, and zero otherwise. USPTO patents are 

the benchmark in this analysis, as they are widely used to measure both US and non-US firm 

innovation. Firm, industry, and country characteristics explain up to 26% of the variation in 

unreported patents (Columns 1-3). Unreported patents increase at the firm level with ROA and 

sales growth and decrease with total assets. Focusing on just the subset of US firms, firm and 

industry characteristics explain a substantial amount of the variation in unreported patents (32% 

to 77%; Columns 6-7). Unreported patents increase with ROA and sales growth, while decreasing 

with total assets and stock liquidity for US firms.  

Collectively, the evidence in this section indicates a significant correlation between 

unreported innovation (R&D and patents) and firm-specific factors. Thus, the result appears to be 

inconsistent with innovation missing completely at random.8  

 

4. Unique Setting to Investigate Imputing Unreported R&D 

4.1. The Setting  

The main challenge to imputation approaches relates to how close are the imputed 

estimates to the true yet unobservable values. In this section, we adopt an innovative approach that 

partially overcomes the unobservable true value problem to examine the efficacy of the various 

common methods used to handle missing R&D in studies of corporate innovation.  

Except for the first year of operation, firms are required to disclose their prior-year financial 

numbers on their financial statements to enable across time comparisons by users of general-

purpose financial statements (Statement of Financial Accounting Concepts No. 8). This enables us 

 
8 The prediction relation remains statistically and economically strong when using either contemporaneous or lagged 
explanatory variables. These results are available from the authors upon request. Results in Table IA2 in Internet 
Appendix III show that focusing only on the Lasso inferred variables does not qualitatively affect the inference. 



	
	

20 

to identify a unique (albeit narrower) setting where we can “recover” the previously unreported 

R&D expenditure information that serves as the true (yet previously unobservable) value. 

Specifically, when firms switch from not reporting to reporting R&D expenditures, they are 

required to report both the current year and prior year R&D expenditure amounts. In this 

instance, we can identify the previously unreported R&D expenditures. Our unique setting is thus 

especially appropriate to investigate how close the imputed estimates from various imputation 

methods are to the “recovered” true values.    

Using the sample of US firms for the period 1992 to 2016, we identify firms that switch 

between reporting and not reporting R&D expenditure.9 We find 738 unique firms that switch 

between reporting and not reporting R&D. We then manually collect data from the annual reports 

(10Ks) of these firms on their prior years’ R&D expenditure, collecting information on the reported 

R&D in the year of the switch and up to two years prior to the switch in reporting. We restrict our 

analysis to firms without any major corporate events (e.g., merger and acquisitions) over the past 

two years that would have altered the underlying business operations of the firm (e.g., Bena and 

Li, 2014).10 We denote these as “Recovered R&D” firms. This provides us with 763 observations 

for the switch year (some firms switch between reporting and not reporting R&D more than once 

during our sample period) and 1,032 recovered observations (some firms report amounts for one 

year, while others for two years before the switch).  

 

4.2 Comparing Recovered R&D Firms to Zero 

We begin our analysis by comparing the characteristics of Recovered R&D firms with zero 

 
9 Our initial analysis uses a window which covers 1999-2012 due to data limitations for pre-1999 international data. 
Our PATSTAT sample ends in 2012 and determines the end of the main sample. In tests focusing strictly on US firms, 
we use a longer sample period (1992-2016). 
10 This is to ensure that the prior year figures disclosed in the switch year reflect only business operations that existed 
in the prior year 10K filings where R&D spending was not reported.  



	
	

21 

R&D firms and positive R&D firms. Panel A of Table 5 presents the results. Panel A shows that 

the average R&D investment for the switching firms with Recovered R&D is $6.69 million a year 

and compares the “Recovered R&D” firms to firms that report zero R&D and positive R&D for 

the comparative years (t-1 and t-2). The R&D expenditure and R&D value of recovered firms are 

statistically different from the zero R&D firms. In addition, the recovered firms differ from zero 

R&D firms across several different dimensions like total assets, PPE, and leverage. The R&D 

absolute investment for recovered firms is significantly lower than positive R&D firms, but the 

R&D expenditure of the two groups are not distinguishable from each other. Recovered R&D 

firms also differ from positive R&D firms in total assets and PPE. Untabulated multivariate tests 

provide similar inferences, showing that recovered R&D is predictable by many common firm 

characteristics. Overall, results in Panel A of Table 5 show that unreported R&D expenditure firms 

differ from both zero R&D firms and positive R&D firms, suggesting that deleting them or 

classifying them as zero innovators is problematic. More specifically, if an innovation covariate is 

correlated with any of the variables predicting recovered R&D firms, then excluding or classifying 

these firms as zero innovators can lead to biased inferences.   

  

4.3. Comparing Different Imputation Methods 

Potential methods of handling missing data are listwise deletion, imputation with zero or 

industry mean, and multiple imputation.11 We test the different imputation techniques using the 

“Recovered R&D” sample as a counterfactual for the true R&D in Panel B of Table 5. In the 

Compustat data, this recovered R&D appears as missing, and we impute this R&D with zero, with 

 
11 See Internet Appendix I for a detailed exposition of all the methods. 
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average industry R&D (two-digits), and with multiple imputed R&D. We compare the recovered 

R&D with the imputed R&D and calculate the difference and related t-statistics.  

We use two samples for the R&D multiple imputation. First, we base our multiple 

imputation estimation on the whole US sample for the period 1992 to 2016 (not just the recovered 

R&D sample), MI Full Sample. Second, we base the multiple imputation only on the sample of 

recovered R&D firms and firms matched within industry and size quartile, MI Sub Sample. Our 

imputation is based on the three Adaptive Lasso determined variables: total assets, stock liquidity, 

and industry patent intensity and estimated by industry (two-digit). We use 200 iterations for the 

imputation in the analysis. If one were to be sceptical about only using Lasso-based variables and 

missing important variables related to corporate finance regressions of interest, Table IA3 in 

Internet Appendix III presents the results for MI using ROA, PPE, sales growth, leverage, lagged 

R&D expenditure at the firm level, as conditioning information on their own and in addition to 

the Lasso variables. The results remain quantitatively similar.  

Panel B of Table 5 shows that recovered R&D is statistically different from zero, i.e. 

replacing with zero underestimates the recovered R&D values. In terms of the dollar amount of 

R&D, the average recovered R&D is $6.91 million, while imputing with the industry average, gives 

an estimate of $77.86 million. The industry average imputed value is over 10 times their actual 

R&D spending and significantly different from the recovered value. On the other hand, the two 

multiple imputation methods generate an average of $6.36 million and $8.66 million, which are 

not statistically different from the recovered R&D values. The relatively large variance in the MI 

values points to the difficulty in using these as exact point estimates for innovation in firms with 

missing R&D, even though it could provide less biased coefficient estimates in OLS models.  

Panel C of Table 5 compares multiple imputation with an alternative innovation 

benchmark, text-based innovation (Bellstam, Cookson, and Bhagat, 2020). Text-based innovation 
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measures firm innovation using Latent Dirchlet Allocation (LDA) analysis for analyst reports of the 

S&P500 firms. This measure is standardized with mean 0 and variance of one, and therefore we 

can effectively only compare the rank correlation between multiple imputation and the text-based 

innovation measure. The results in Panel C of Table 5 show that there is a strong and statistically 

significant rank correlation, 30%, between MI and text-based innovation. Multiple imputed R&D 

is actually more highly correlated with the text based innovation measure than USPTO patents, 

global patents, or reported R&D. 

Overall, results in Table 5 show that firms with recovered R&D differ from firms that 

explicitly report zero R&D, they are not similar to the average firm in the industry, and multiple 

imputation provides the closest imputation to the true value of their R&D investment. Although 

this design provides a sharp setting to generate the above-mentioned insights, it may not be fully 

representative of the broader set of firms with missing innovation data. For a more representative 

set of firms, we focus on the relation between MI and text-based innovation for S&P500 firms, 

which is large and positive. However, to provide a broader and more comprehensive analysis, in 

the next section, we turn to two simulation-based analyses to alleviate this concern.  

 

5. Simulation Analysis  

We consider two simulation studies, one based on the empirical distribution of Compustat 

(US) data and one on simulated data, to compare different methods of dealing with missing data 

in various data generating processes (DGPs). The first approach mimics current empirical exercises 

involving R&D. The second approach allows us to determine the distribution of all variables and 

their correlations and to examine the performance of methods in a well-controlled environment.  

In both cases, we compare six methods to handle missing values. First, we consider listwise 

deletion. Second, we impute the missing R&D expenditure by zeros (ImpZero). Third, we impute 
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the missing R&D by the industry average (ImpMean). Specifically, if an observation of firm i at 

time t is missing, we impute the missing observation by the industry average (two-digit SIC code) 

for the firm in the same year. For both ImpZero and ImpMean, we also include a dummy variable 

indicating missingness as an explanatory variable. Fourth, we use Heckman's two-stage procedure 

with the selection variables containing all the observed covariates W. Heckman’s procedure first 

predicts firms’ selection probabilities by W, then corrects the selection bias by including a 

transformation of these predicted probabilities as an additional explanatory variable. Next, we 

consider the inverse probability weighting method (IPW) that weights each i-th observed point by 

the inverse of its conditional selection probability in least square estimation. We use the standard 

package of Heckman's procedure and IPW in STATA. Finally, we consider multiple imputation 

(MI). Since the variables generating the missingness are not known a priori, we use all observables 

including the outcome variable as selection variables in the imputation model.12 To implement 

MI, we use 200 imputations based on a Markov chain Monte Carlo (MCMC) procedure and 

employ a multivariate normal regression for each imputation.  

We evaluate the performance of the six methods with two criteria: The bias (B) and root 

mean squared error (RMSE) of coefficient estimates of the main regression. In particular, let & be 

the coefficient vector of the main regression of interest. We calculate the bias and RMSE of the 

estimate &9 respectively, by: 

B;&9< = "
#∑ >&9$ − &%>#

$&" /&%	  (3a)  

RMSE;&9< = EF"#∑ ;&9$ − &%<#
$&" G

'
+ HIJ;&9$<K

" '(
,  (3b) 

 
12 Multiple imputation draws the missing variable from a joint (predictive) distribution of observables for multiple 
times, and thus the set of observables should include all variables that are potentially correlated with the missing 
variable. Since sales growth is correlated with R&D, we also include it in the imputation model. Ignoring sales growth 
in imputing unreported R&D leads to incomplete conditioning of observables and biased estimates in the regression 
of interest (Moons et al., 2006; Sterne et al., 2009; Bartlett et al., 2011).  
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where &9$is the estimate in the r-th replication, HIJ(&9$) is the estimated robust variance of &9$, &% 

is the true value of the parameter, R is the number of simulations. Note that we present the bias as 

a proportion of the benchmark (" to compare across coefficients, thus one cannot use the reported 

bias (B) to calculate the RMSE. Based on the observed missingness of R&D and patents in the US, 

we consider two levels of missingness relevant for innovation variables: 50% and 70%. We perform 

500 simulations. 

 

5.1. Empirical Distribution-Based Simulation 

For the empirical distribution-based simulation, we begin with a panel sample of 783 firms 

in Compustat over the period 1992-2012, where we have non-missing information on all financial 

variables of interest, except for R&D. The data include: natural log of total assets (A), leverage (L), 

intangible assets (I), Tobin's Q (Q), return on assets (R), R&D expenditure (RD), liquidity (V), 

industry patent intensity (PI), and sales growth (S). To investigate the effects of R&D missingness 

on the coefficient estimates of our evaluation model and how different methods of handling missing 

R&D perform, we generate R&D expenditure with missing observations that incorporate the three 

types of missingness. The resulting estimated coefficients (&9$) under each condition are used to 

calculate the bias and RMSE per Eqns. (3a) and (3b). Our baseline regression uses simulated sales 

growth as the dependent variable and R&D expenditures, the natural log of total assets, Tobin's 

Q, leverage, and return on assets as explanatory variables. This approach enables us to obtain a 

clean set of benchmark coefficients that are free from researcher intervention except for the 

balanced, non-missing data criteria. Next, we describe the data generating process (DGP) for i) 

R&D expenditure with missing observations, and ii) the outcome variable of interest, sales growth. 
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5.1.1. Generate Missing R&D Expenditure 

To simulate the missing R&D, we employ a subsample of complete balanced panel data, 

without missingness in R&D, that contains 311 firms over 21 years from 1992 to 2012. A clear 

advantage of this approach is that we do not need to make assumptions or estimate the conditional 

distribution of the R&D given that it is not missing, which is typically difficult to obtain. More 

importantly, it allows us to introduce the three types of missingness more precisely into the data as 

described below while providing us with “true” values as benchmark cases. We generate a missing 

indicator for R&D, denoted by M that equals 1 if R&D is missing and 0 otherwise. Once we model 

and assign missing R&D observations, we can obtain the simulated R&D since the data are 

complete, and the non-missing observations are given by their original values. 

To create a missing indicator for R&D, we consider the three missing mechanisms: Missing 

completely at random, missing at random, and missing not at random. Let $! be the individual firm effects 

and denote LM!) as an idiosyncratic error. The three missing patterns can be summarized by: 

• Missing completely at random: N!) = LM!), (4) 

• Missing at random: N!) = $! + O*
+ P!)

* 	+ LM!), (5) 

• Missing not at random:  N!) = $! + O*
+ P!)

* 	+ O,
+ P!)

, + LM!), (6) 

where P!)*	contains observed variables by researchers, while P!), is unobserved and only appears in 

the DGP but is omitted in imputation models. For MAR, we consider )#$% = (+#$, ,#$, -.#$	)′, which 

are the Lasso derived variables, and for MNAR, we add P!), = Q!)  to P!)*  (where Q!)  represents 

intangible assets).13 To generate the missing indicator N!), we need to know the true values of the 

parameters $! , O- , and O. . However, it is well recognized that modeling binary variables is 

 
13 The choice of conditioning observed variables for the missingness specification does not affect the simulation results. 
Table A2 in the Appendix presents robustness analysis with other specifications for !!"#. 
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difficult in econometrics, and this is even more complicated in panel data models due to the 

difficulty of estimating individual fixed effects; see Lahiri and Yang (2013) for a review. To 

incorporate the firm fixed effects, we adopt the commonly used assumption that the firm fixed 

effects are correlated with the time-average of covariates in a linear manner (see Chamberlain, 

1984), i.e. $! = R + S*
+ PT!

* + U! in MAR and $! = R + S*
+ PT!

*+S,
+ PT!

, + U! in MNAR, where PT!* =

1/V∑ P!)
* ,/

)&" 	PW !
, = 1/V ∑ P!)

,/
)&"  and U! is the idiosyncratic noise. This assumption implies that 

we can incorporate the firm fixed-effects by augmenting regressions (5) and (6) by the time-series 

averages of covariates, respectively, as: 

N!) = R + O*
+ P!)

* + S*
+ PT!

* + L!), (7) 

N!) = R + O*
+ P!)

* 	+ O,
+ P!)

, + S*
+ PT!

* + S,
+ PT!

, + L!), (8) 

where L!) = LM!) + U!. Since there are no fixed effects in (7) and (8), we can estimate all parameters 

in these two models and predict N!) based on these estimates. Specifically, we first estimate (7) and 

(8), respectively, by a probit regression of the missing data indicator for R&D using the panel data 

sample (783 firms). We set the estimates R̂, OY*, OY,, SZ*, and SZ, , as the true parameters to generate 

the missing probability N!)
∗  in the complete subsample of the data: 

N!)
∗ = Φ(\]!)).  (9) 

Φ is the normal CDF function and \]!) is obtained for the three scenarios by: 

1. Missing completely at random: \]!) = L!), (10) 

2. Missing at random:     \]!) = R̂ + OY*P!)
* + SZ*PT!

* + L!),  (11) 

3. Missing not at random:  \]!) = R̂ + OY*P!)
1 + OY,P!)

2 +	SZ*PT!
* +	SZ,PT!

2 + L!), (12) 

where L!)~QQ_	-(0, 3̀') and 3̀' = 0.15 based on the empirical distribution of the error term. 

Once we obtain N!)
∗ , we set the (i,t)-th observation of R&D as missing (N!)

∗ = 1)	depending on 
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N!)
∗ > Q4(N!)

∗ ) , where Q4(N!)
∗ )  is the d -th quantile of N!)

∗ , and d  controls the percentage of 

missing.  

 

5.1.2 Generating Sales Growth 

We simulate the outcome variable of interest, i.e. sales growth e , because observable 

growth is potentially influenced by variables omitted from our empirical specification. We want to 

isolate the impact of missing innovation data from the errors from omitted variables in our 

regression of sales growth on innovation.14 We generate e in the complete subsample without any 

missingness (311 firms over 21 years). The DGP of e is based on the following model: 

e!) = f! + g′i_!) + &′j!) + (!), (13) 

where f! is firm fixed effects, j56 contains the determinants of sales growth, j56 = {k56, 3!& ,i56,l56}′, 

and (!)is the error term. Note that intangible assets are not observed and thus also not included in 

the DGP of e. The firm fixed effects f! are generated by f! = 0.1m+j̅!, where m is a 4×1 vector of 

ones and j̅! = 1/V	 ∑ j!)/
)&" , and thus f! is correlated with sales growth determinants. To obtain 

the parameters for g′  and 	&′ , we estimate (13) using the same complete subsample without 

missingness and fix the estimated values in the simulation. To allow the idiosyncratic error to be 

correlated with selection instruments, we generate (!) = (!̃) + pT!  in MAR and (!) = (!̃) +

0.5(pT! + Q!̅) in MNAR. Here pT! and Q!̅ are the time average of Tobin’s Q and intangible assets for 

firm * , respectively, which drive the missingness of R&D as discussed in Section 5.1.1. 

 
14 We use simulated sales growth rather than observed sales growth in the benchmarking exercise because it allows us 
to explicitly compare the estimated coefficients to the true values. In contrast, using observed sales growth in our tests 
allows bias from two sources: imputation bias and misspecification bias (e.g., omitted variables), rendering the 
comparison between various imputation methods less clear.   
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(!̃)~QQ_	-(0, 7̀')  and 7̀' = 0.18  based on the empirical distribution of the residual from 

estimating equation (13). 

 

5.1.3 Simulation Results 

Table 6 reports the simulation results under three missing mechanisms and two levels of 

missingness (50% and 70%). When R&D is missing completely at random, we find that both bias 

and RMSE increase with increasing missingness in R&D (Panel A). All methods show a relatively 

small bias under MCAR, except IPW and Heckman. IPW and Heckman, typically do not include 

fixed effects due to the difficulty in estimating fixed effects in binary model settings, which 

potentially explains part of their relatively poor performance (we use the standard packages in 

STATA for these two methods). In missing completely at random, multiple imputation has the lowest 

bias. Multiple imputation exhibits relatively smaller RMSE than other methods too. Deterministic 

imputation methods (ImpZero and ImpMean) generate double the bias in multiple imputations 

and RMSEs that are similar to MI. Still, MI has both the lowest average bias and RMSE under 

MCAR.  

Panel B shows the results for MAR, where the bias of all methods increases from MCAR. 

Under MAR, all methods lead to biased estimates, not only for R&D (which has missing 

observations), but also for the other explanatory variables that do not have any missingness. MI on 

average produces the lowest bias across all of six methods followed by ImpMean and ImpZero. 

The average absolute bias in listwise deletion is over ten times greater than the bias in multiple 

imputation, while bias in IPW and Heckman are over 170 times and 80 times greater than MI.  

The common imputation methods, on average, exhibit similar RMSEs, where ImpZero, 

ImpMean, and MI have the lowest RMSEs. Panel C shows the results when missingness is driven 

by unobservables (MNAR). Under MNAR, MI continues to produce the lowest bias among all six 
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methods followed by ImpZero and ImpMean. The bias in LD is six times larger than the bias in 

MI. Focusing on RMSE, once again ImpZero, ImpMean, and MI all exhibit similar magnitudes. 

For robustness, we also investigate other settings for both the determinants of R&D 

missingness in equations (11) and (12), as well as the sales growth DGP in (13). We introduce a 

larger set of conditioning variables in equations (11) and (12) in Panel A of Table A2, a larger set 

of conditioning variables in equation (13) in Panel B of Table A2, and Lasso as a variable selection 

procedure to determine which covariates should be included in the MI models in Panel C of Table 

A2. In the last setting, we consider a double Lasso procedure that applies Lasso to both R&D 

expenditure and sales growth regressions.15 The double Lasso procedure is theoretically justified 

by Belloni et al. (2014), and it allows us to select variables that are correlated with both R&D 

expenditure and sales growth for accurate imputation. The results in Table A2 are quantitatively 

similar to those in Table 6. MI results in the lowest average bias consistently across methods. 

Our simulations focus on two separate levels of R&D missingness, namely 50% and 70%. 

However, our cross-country sample, which underlies Tables 1 to 4 reveals that the level of 

missingness varies by country. Specifically, the rate of missing R&D data ranges from 5% missing 

in Japan to 85% missing in Italy. Consequently, we repeat the simulation analysis across a wide 

selection of missingness levels in 5% increments. Figure 2 shows the relative bias in the R&D 

coefficient estimate in using multiple imputation and listwise deletion as the rate of missing R&D 

increases from 5% to 85% for MAR. Across the entire range of missing R&D, multiple imputation 

exhibits substantially lower bias in the R&D coefficient estimate relative to listwise deletion.  

 
15 In particular, we first employ Lasso to select covariates in the model regressing R&D expenditure on all available 
covariates: Tobin’s q, total assets, leverage, ROA, liquidity, industry patent intensity, and their time-series averages 
for each firm. We denote the selected covariates as !$%. Next, we use Lasso to select the covariates in the model 
regressing sales growth on all available covariates specified above and obtain the selected covariates denoted as !&'. 
We use the union of !$% and !&' as variables in multiple imputation. 
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It is worth noting that these results constitute a lower bound on bias generated by LD and 

deterministic imputation methods for two reasons. First, we include all the missingness 

determinants (A, V, and PI) as control variables, which implies that even if one knows the 

missingness mechanism and correctly controls for it, the estimated coefficients are still biased. 

Second, we have assumed that the errors in the sales growth and the selection regressions are not 

correlated, which is most likely not the case in reality. In untabulated results, we show that if the 

errors of the two regressions are correlated, then the bias of deletion and deterministic imputation 

increases.  

The analysis of simulations based on the empirical distribution, albeit realistic and 

informative, does not allow us to clearly infer how the correlation between variables, which might 

differ across data samples, influences the performance of methods. Therefore, in the next 

subsection, we conduct simulation analysis using generated data, where we can precisely specify 

the correlation among errors and compare the magnitude of the effects of various methods in a 

well-controlled environment.  

 

5.2 Simulation with Generated Data 

5.2.1 Data Generating Process 

We generate the dependent variable of interest as follows: 

r! = ""!&" + "'!&' + (! ,				* = 1,… . , -, (14) 

where &" = &' = 1, (!~QQ_	-(0,1), and N=1,000. The two covariates ""! and "'! are generated 

by a multivariate normal distribution with unit means and variance-covariance matrix specified 

later. ""! contains missing observations, while "'! is completely observed. Let N! be the missing 

indicator of 5"!  that equals 1 if 5"!  is missing and 0 otherwise, which is determined by N! =
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1[N!
∗ > Q4(N∗)], where 1[∙] is an indicator function, N!

∗ is a latent variable, Q4(N∗) is the d-th 

quantile of N∗. We consider two values of Q4(N∗), 0.7 and 0.5, which correspond to 70% and 

50% of missing observations in 5"!, respectively. We consider three missing mechanisms for 5"!: 

• Missing completely at random: N!
∗ = L!,     

• Missing at random: N!
∗ = 5"!S" + 5'!S' 	+ L!,     

• Missing not at random:  N!
∗ = 5"!S" + 5'!S' + 58!S8 + 59!S9 + L!.   

We set {S", S', S8, S9} = {2,1,1,1}. 5"! and 5'! are observed covariates that drive the missing 

pattern, while 58!  and 59! 	are unobserved. L!  is the error term, independently generated from 

N(0,1) in MCAR, but correlated with (! in MAR and MNAR. We consider various patterns of 

correlations between the generated variables. In the benchmark case, we set the covariance matrix 

for the multivariate normally distributed {"", "', 5", 5', 58, 59, (, L} as: 

⎝

⎜
⎜
⎜
⎜
⎛

1
0.4 1
0.5 0.4 1
0.4 0.4 −0.2 1
0.2 0.1 0.2 0.3 1
0.1 0.2 0.1 0.1 0.1 1
0 0 0 0 0 0.4 1
0 0 0 0 0 0 0.4 1⎠

⎟
⎟
⎟
⎟
⎞

. 

Note that all covariates {"", "', 5", 5', 58, 59, (, L} are correlated with each other. The two 

error terms are correlated with each other, but they are independent of the observed covariates. 

In MNAR, the missingness is also driven by two unobservables, which may be correlated with the 

errors. Hence, the unobserved selection variable 58  is uncorrelated with both errors, and 59 

correlated with (.16  

 
16 We tried different parameters and generated different densities, reaching quantitatively similar conclusions. We also 
considered alternative specifications of the covariance matrix to investigate how the correlation between variables 
affects the performance of different methods. The results are available upon request from the authors. 
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5.2.2 Results 

Table A3 in the Appendix presents the results for the simulation with generated data. As 

in the previous simulation, both bias and RMSE increase with missingness in "" and from MCAR 

to MNAR. We first focus on the results with 70% missingness. Panel A shows the results for 

MCAR, where all methods produce negligible bias and small RMSE for both explanatory 

variables. There are only marginal differences across LD, Heckman, IPW and MI. However, the 

two deterministic imputation methods (using zero and industry average) produce the largest biases 

and RMSE.  

Panel B shows the results for MAR, where listwise deletion exhibits a substantial sample 

selection bias, and both coefficient estimates are downward biased at 15% and 12% respectively 

for &" and &'. Imputation using zeros or industry means increase the bias in &" from -19% to -

23% but decreases the bias in &' from 28% to 12%. The Heckman procedure exhibits among the 

smallest bias that is comparable to MI, but at the cost of variance. This is reflected in the large 

RMSE of the Heckman estimates, suggesting that the two-step procedure is rather inefficient. On 

the contrary, MI performs well, despite the increase in biasness, it continues to have among the 

lowest bias. The bias of MI is around half as large as that of listwise deletion, and almost two times 

smaller than that of imputation using zeros or means, and MI has the smallest RMSE. 

For MNAR, all methods produce biased estimates due to the non-random missing pattern, 

but the degree of bias differs substantially across methods (Panel C). Imputation using zeros or 

mean leads to the largest bias and RMSE for &" among the six methods (&" bias is around 28%); 

while the bias and RMSE for 	&' are generally in the middle of the six methods (&' bias is 14%). 

The biasness in LD and IPW methods also deteriorates in comparison to the MAR setting, leading 

to more than 17% and 15% downward bias in &" and &' respectively. Both the bias and RMSE 
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for the Heckman procedure deteriorated by 62.5% in comparison to MAR (the largest 

deterioration among the six methods). Despite the observed deterioration compared to MAR, MI 

continues to produce the lowest bias and RMSE among the six methods.  

In general, all six methods show lower bias and RMSE at lower levels of missingness (50%) 

than at higher levels of missingness (70%). As the level of missingness varies across different data 

sets, the relative efficacy of the methods we investigated could differ. Replicating our analysis across 

different levels of missingness reveals that multiple imputation consistently exhibits the smallest 

bias. In contrast, the bias from listwise deletion increases substantially with the level of missingness.  

 

6. Impact of Bias on Inferences through Replication 

Our analysis so far has conceptually demonstrated the problems with the various methods 

of handling unreported R&D. Yet, we do not know the economic significance of the effect of the 

treatment of unreported R&D for empirical studies. This is a cross disciplinary problem and we 

use the analysis of Fama and French (2002, FF02 hereafter) to assess the economic significance of 

the effect of different methods of handling unreported R&D on economic inference. One of the 

most important issues in corporate finance is understanding how firms chose their capital structure. 

The two prevailing models are the trade-off and pecking order models. Fama and French (2002) 

test the implications of these models for firm dividends and leverage. They report a positive relation 

between leverage and profitability for dividend and non-dividend paying firms. FF02 find 

ambiguous results on the relation between investments and leverage, as the two proxies for 

investment have opposite signs: market-to-book is positively correlated with leverage and R&D 

expenditures are negatively correlated with leverage. For expositional simplicity, we focus this 

analysis on comparing multiple imputation to the two most commonly used solutions to missing 

R&D, namely deleting firms without R&D and classifying them as zero innovators.  



	
	

35 

We replicate their sample and note that 60% of the firms in their sample do not report 

R&D expenditures. FF02 classifies all firms with unreported R&D as having zero R&D, and they 

include a dummy variable equal to one to differentiate firms with unreported R&D from firms that 

report zero R&D. We estimate the leverage regression (Equation 15) below to evaluate if leverage 

differs across firms in the manner predicted by the trade-off or pecking order model using three 

approaches—listwise deletion, zero imputation with a missing dummy, and multiple imputation—

and compare the resulting estimates: 

:(
;(
= O% + O"

<(
;(
+ O'

=/(
;(
+ O8

>?(
;(
+ O9i__) + O@

#>(
;(
+ OA ln(k)) + É) . (15) 

We follow FF02 in the choice of the sample period, variables of interest, and notation. 

=/(
;(
	the ratio of annual pre-interest pre-tax earnings to end-of-year total assets, is a proxy for the 

expected profitability of assets in place.17 <(;(,	the ratio of a firm’s total market value to its book value, 

is a proxy for expected investment opportunities. #>(;(
, the ratio of R&D expenditures to assets, is 

an additional proxy for expected investment. Unreported R&D is imputed with zero. RDDt is a 

dummy variable equal to 1 for unreported R&D, and zero otherwise. >?(;(
,	the ratio of depreciation 

expense to assets serves as a proxy for non-debt tax shields. ln(%)),	the natural logarithm of total 

assets is a proxy for volatility. The sample period is 1965-1999 as in FF02.  

Table 7 replicates FF02 using a contemporaneous regression with two-way fixed effects, 

double clustered standard errors, and five additional treatments for unreported R&D. Panel A 

presents results for dividend-payer firms and Panel B for non-dividend payer firms. We use listwise 

deletion (LD), multiple imputation with only the variables in the regression (MI), multiple 

 
17 ETt earnings before taxes, preferred dividends, and interest payments is the income that could be sheltered from 
corporate taxes by interest deductions. Thus *+!,! 	is a measure of profitability when we look for tax effects in the trade-
off model. 
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imputation with Lasso variables volume and patent intensity (MI Lasso), pseudo R&D, and text-

based innovation. In order to implement pseudo R&D, we still need to impute R&D for firms that 

do not report pseudo R&D, which is 95% of the sample. We impute R&D with zero for those 

cases. There are only 2,016 observations where text-based innovation is not missing in this sample, 

because text-based innovation is available for the period 1990 to 2012. 

The various estimation techniques lead to very different estimates for β, confirming the 

importance of how violations of the MCAR assumption and the distortion of the variance-

covariance matrix with zero imputation that cause listwise deletion and zero imputation to yield 

inconsistent estimates. The estimates based on zero imputation and listwise deletion reported in 

Columns (1) and (2) are negative and differ considerably from estimates using multiple imputation 

(Columns 3 and 4), which are positive. This suggests that the inferences made by the researcher in 

innovation could be driven by how they chose to deal with missing innovation data.   

The results using zero imputation and a dummy variable show no relation between market- 

to-book ratio and leverage, and a marginal effect of profitability on leverage for dividend-paying 

firms (Column 1 Panel A). Listwise deletion leads to an insignificant relation between market-to-

book ratio and leverage and between depreciation and leverage for dividend-paying firms (Column 

2 Panel A). Columns (3) and (4) of Table 7 presents the results for unreported R&D imputed using 

multiple imputation. In this case, there is a substantial change in the magnitude of the coefficients 

of all the explanatory variables. Most importantly, the relation between both investment variables 

and leverage is positive and internally consistent. Now R&D expenditure has a positive impact on 

leverage and not negative, as in Columns (1) and (2), which is congruent with pecking order theory. 

Using alternative measures of innovation like pseudo R&D and text-based innovation leads to 

similar results to zero-imputation and listwise deletion. The pseudo R&D result is heavily driven 

by the zero imputation of the rest of the observations. The estimates in Table 7 illustrate that the 
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method used to handle missing R&D can lead to substantially different inferences. Using multiple 

imputation for missing R&D in this setting potentially explains the puzzling findings in the original 

FF02 study. 

 

7. Patents 

So far, we have presented analyses using unreported R&D. Yet, many studies of corporate 

innovation rely on patent data from the USPTO, with studies of international firms also tending 

to rely on this patent database. Unlike disclosure requirements for R&D expenditures, firms do not 

face an affirmative duty to seek patents, which potentially explains why most US firms do not 

submit patent applications. Consequently, we conduct a similar analysis for patents as for 

unreported R&D. We investigate the performance of different imputation methods using two sets 

of counterfactuals: first we use non-USPTO patents of US firms as counterfactuals, and second, 

we use the product innovation measure Mukherjee et al. (2016). We conclude with an empirical 

data-based simulation for patents. 

 

7.2 Relevance of Unreported Innovation via Patents 

Innovation-related studies, across accounting, economics, and finance, focus on patenting 

as the most important outcome of the research and development process. These studies mainly use 

data from the USPTO-NBER dataset. This dataset includes all firms that have applied for USPTO 

patents and the NBER has conducted extensive disambiguation of firm data. While this dataset 

has been instrumental in conducting the first pieces of research, it provides a partial view of 

innovation and patenting activity. For researchers interested in understanding and/or capturing a 

fuller extent of firm innovation activities, investigating patenting only through the USPTO will 
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underestimate the innovative activity of many firms. Next, we investigate the properties of patents 

filed outside USPTO jurisdictions to understand the importance of non-USPTO patents. 

Over 14,000 US-firms applied for USPTO patents in the sample period, 9,518 US-firms 

received patens abroad, while 1,676 non-US firms received USPTO patents and 1,758 non-US 

firms received non-USPTO patents. The total number of patents granted in non-USPTO 

jurisdictions per year is substantial for both US and foreign firms. For instance, foreign firms are 

granted 20% more patents in non-USPTO jurisdictions than in the US. US firms also are granted, 

on average, 22 patents a year outside the US and 28.2 patents in the US. Firms without USPTO 

patents are typically deleted or counted as non-innovative firms when using USPTO data and 

generate a bias in the coverage of patenting.  

We use the sample of US firms that patent abroad to investigate the different methods of 

handling unreported patents, similar to Panel B of Table 6. We impute observations without 

USPTO patents with zero, industry mean (two-digit SIC code), and multiple imputation. Multiple 

imputation is carried out with all the variables in Table 4, by industry (two-digit), and the Lasso 

variables of stock volume, patent intensity, and R&D stock. Results in Figure 3 show that US 

patents abroad are not equal to zero, they are different from the USPTO industry mean, but they 

are not statistically different from MI. 

 As an alternative counterfactual, we use MI to predict the number patents of firms with 

new major products, as in Mukherjee et al. (2016), without USPTO patent applications. Table 8 

presents the comparison between two different MI methods. MI M1 includes the Lasso variables 

only: stock liquidity, R&D stock, and industry patent intensity using PATSTAT patents, MI M2 is 

the multiply imputed non-USPTO patents using the same model as M1 and ln(total assets), ROA, 

PPE, capital expenditure, sales growth, and leverage as conditioning information. 
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Panel A presents the innovation characteristics of firms with various coverage of patents 

and new products. The majority of the sample has no patents and no new products (Column 2). 

These firms have the lowest R&D expenditure and lowest percentage of R&D reporting. Just over 

3% of the sample has both USPTO patents and new products (Column 3), but these firms have 

the highest reporting rates for R&D (91%) and the largest R&D expenditures. About 6% of the 

sample has no USPTO patents but announce new products (Column 1). Finally 14% of the sample 

has patents but does not report any new products. The difference between firms with no patents 

and new products and firms with patents and no new products is large and statistically significant.  

Panel B of Table 8 presents the single and multiple imputations for the four above 

categories and compares firms without patents and new products to firms with patents and no new 

products. Imputing the number of patents with zero or industry average is statistically different 

from the counterfactual of firms with patents and no new products. In contrast, imputing with 

multiple imputation results in patent numbers that are not statistically different from firms with 

patents and no new products.  

 

7.3 Empirical Data-Based Simulation 

Patents and R&D expenditures may have different determinants and missingness levels. To 

further understand the properties of the different methods for handling missing data in the patent 

setting, we replicate the empirical distribution-based simulation, with the USPTO patent data 

distribution. Table A4 in the Appendix presents the results of the simulation based on the patent 

empirical distribution. Under MAR, IPW and Heckman generate the highest biasness in 

coefficient estimates relative to both imputation and deletion. Focusing on MNAR, deterministic 

imputation and multiple imputation both perform better than listwise deletion, IPW and Heckman 

approaches.  
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8. Conclusions and Recommendations 

Most public firms do not report R&D expenditures, do not obtain patents, nor receive 

patent citations. Studies across accounting, economics, and finance typically exclude firms without 

reported R&D or patent activity or classify them as zero innovators (e.g., Autor et al., 2020; 

Corrado et al., 2020; DeSimone et al., 2020; Koch et al., 2020). Given the wide range of 

approaches used in recent empirical studies, there is a substantial need for research that evaluates 

the relative role of various solutions to the case of missing R&D or patents, giving guidelines for 

future research for studies that use these variables as conditioning variables. We study how various 

methods of handling unreported innovation affect our inferences about corporate research and 

development. More specifically, we explore the assumptions underlying different methods of 

handling unreported innovation, assess the biases that each of these methods introduces, and 

provide guidance for future research. 

Instead of arising randomly, we document that unreported innovation is systematically 

correlated with several firm, industry, and country characteristics. Accordingly, eliminating firms 

without R&D or patents provides biased results, if a proposed innovation covariate is correlated 

with any of these predictor variables (e.g., firm size, leverage, profits, etc.). Because patent 

prevalence is even lower than the frequency of reported R&D, concerns about biases from deleting 

firms without patents is especially pronounced.  

Using recovered R&D, which allows us to accurately measure unreported R&D 

expenditures in prior unreported years, we compare different methods of handling firms without 

reported R&D. These recovered R&D firms do not look like zero R&D firms nor do they appear 

similar to positive reporting R&D firms. The recovered R&D is also statistically different from the 

industry average. This finding is problematic for the common methods for handling unreported 

innovation, namely deleting the firms, classifying them as zero innovators or setting their R&D to 
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the industry average and including a dummy variable. Simulation results allow us to rank the biases 

created from different methods of coping with firms without patents or reported R&D. For 

instance, replacing missing innovation with zeros underestimates true innovation and leads to 

biased R&D coefficient estimates (e.g., Table 6). To demonstrate the economic impact of these 

findings, we replicate an influential finance study (Fama and French, 2002) and explicitly show 

how different approaches to unreported innovation affect empirical inferences. 

Innovation variables exhibit very high rates of unobservability. The most common methods 

to handle firms without observable innovation (R&D or patents) are excluding them (listwise 

deletion) and deterministic imputation (with zero or the industry mean). Our results show that 

unreported R&D and firms without patents are predictable and that the variables used to predict 

this missingness are known determinants of both innovation and other corporate outcomes of 

interest. Consequently, in studies that rely on the traditional methods of handling unobservable 

innovation, the residual in the regressions will likely be correlated with other explanatory variables. 

The deletion of firms with unobservable innovation and their classification as non-innovators, even 

after including a dummy variable, can lead to biased coefficients of not only innovation, but also 

other explanatory variables. These traditional methods of handling unreported innovation do not 

work well in addressing unreported innovation when the selection is correlated with outcome 

variables of interest. One of the most important takeaways from these findings is that commonly 

used solutions to handle unreported innovation can lead to biased parameter estimates that make 

prior inferences about corporate innovation difficult to assess. 

It is difficult to give definitive solutions to dealing with missing innovation across different 

datasets, countries, and research settings. Our results using US data reveal that the two common 

methods to handling missing innovation data provide biased coefficient estimates and standard 

errors. Strikingly, across a wide range of specifications, multiple imputation exhibits the least bias 
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and RMSE among the six methods we investigate. Importantly, MI is the solution to unreported 

innovation data that is used the least in finance and economics studies. Of course, in a single 

industry analysis with limited numbers of positive R&D firms (e.g., Real estate renting and leasing, 

SIC 53) or where upward of 90% of the missing R&D firms arise from zero R&D expenditures, 

replacing missing with zero will provide a reasonable solution. Yet, multiple imputation still 

performs well in this scenario as well.  

The results allow us to provide some general guidelines and recommendations for 

economics and finance scholars confronted with unreported innovation.   

1. In studies of innovation, missing R&D and patents can arise from: i) random collection 

error from data providers, ii) managers not reporting R&D expenses due to zero (near 

zero) innovation, iii) strategic disclosure choices in reporting R&D expenses and 

patenting, iv) unsuccessful R&D, or v) firms filing for patents in alternative patent 

offices. Consequently, researchers should report both full and partial sample 

characteristics of the variables of interest. The level or degree of missingness of the 

innovation variable being used should be noted.  

2. Researchers with missing innovation data should test if the missing data is predictable 

or MCAR. Little (1988) provides a test to determine if the data is missing completely at 

random. For Stata users, the mcartest command implements this test. 

3. If the missing data is unpredictable or MCAR (maybe because the missing data stems 

from random collection errors by the data provider), then researchers could potentially 

delete or exclude the observations with missing data. 

4. If the missing data is predictable, then researchers should attempt to predict missing 

innovation data using economically motivated observable variables. The predictive 

variables should be included as covariates in the regression and selection model. The 
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researcher could use multiple imputation (for Stata users the MI command) to handle 

the missing observations. 

5. If the missing data is predictable and there are both observable and unobservable 

characteristics that lead to missing innovation data, the problem is more challenging. 

Schafer and Graham (2002) show that multiple imputation can often be unbiased for 

MNAR and MAR data even though the researcher assumes the data to be MAR. 

Conceptually, both Heckman correction and multiple imputation remain appealing, 

with both approaches involving assumptions and tradeoffs. Surprisingly, Heckman 

correction and Inverse Probability Weighting are the worst performers under MNAR 

in our simulations, with MI typically performing the best.  

Overall, when missingness is beyond the researcher’s control and its distribution is unknown, 

handling this missing data ultimately boils down to the assumptions and mechanisms of 

missingness. In finance studies, a researcher must often decide on the assumptions of MAR versus 

MNAR, which involves the use of MI versus IV respectively. Yet, the assumptions underlying both 

IV and MI are likely to be violated. In practice, violating the assumptions of MNAR often has only 

a minor impact on estimates and standard errors because the covariates included in imputation 

models are often correlated with the determinants of missingness (Collins et al., 2001). 

Consequently, one might tilt towards the use of MI for missing innovation data. Yet, we 

recommend reporting both MI and IV estimates, coupled with a discussion of the plausibility of 

the underlying assumptions in the spirit of partial identification.  

In summary, the proportion and distribution of missing innovation data in the sample 

should be reported. Researchers should conduct an analysis of the randomness and predictability 

of the missing innovation data in their sample. Researchers should consider performing simulations 
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similar to ours, based on their own data, to choose between the various methods of handling 

unreported innovation. 
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Table 1  
Sample Characteristics and Univariate Comparisons 

 
This table shows the sample characteristics and univariate comparisons. Panel A presents the sample 
characteristics. The sample period is 1999–2012. Panel B shows the difference in characteristics across 
different deletion methods. “Full Sample” uses all available observations without deletion based on either 
reported R&D or patent application information. “Report R&D” includes only observations that report 
R&D. “Report Patent” includes only observations that patent applications in any patent office, “R&D and 
Patent” includes only observations that have positive R&D and patent filings in the PATSTAT. Firm-years 
represent the maximum number of observations available for each subsample. Variable definitions are 
presented in Table A1. *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. 
 
 
Panel A. Sample Characteristics 
 
Variables N Mean Median Std. Dev. 25th 75th 
 (1) (2) (3) (4) (5) (6) 
R&D Expenditure 118,264 0.08 0.02 0.60 0.00 0.06 
Report R&D 333,920 0.35 0.00 0.48 0.00 1.00 
Ln(Total Assets) 330,790 6.74 6.64 2.96 4.75 8.61 
PPE 328,021 0.28 0.23 0.23 0.01 0.43 
Tobin’s Q 225,349 1.67 0.64 19.97 0.31 1.30 
Leverage 330,580 0.95 0.52 63.21 0.32 0.69 
Capital Expenditure 311,017 0.06 0.03 0.78 0.01 0.07 
ROA 328,801 0.01 0.05 0.22 0.01 0.10 
Sales Growth 302,442 0.26 0.07 1.05 -0.04 0.25 
No. of Patent Applications 333,920 9.36 0.00 140.78 0.00 0.00 
No. of Patents Granted 333,920 4.50 0.00 69.54 0.00 0.00 
Citations 333,920 23.43 0.00 442.67 0.00 0.00 

 
 
Panel B. Univariate Comparison of Samples 
 
 Full Report Report R&D and  Differences 
  Sample 

(1) 
R&D 

(2) 
Patent 

(3) 
Patent  

(4) 
(5) =  

((1)-(2))/(1) 
(6) = 

((1)-(3))/(1) 
(7) = 

((1)-(4))/(1) 
Ln(Total Assets) 6.74 7.25 7.47 7.40 -8%*** -11%*** -10%*** 
PPE 0.28 0.24 0.23 0.20 14%*** 18%*** 29%*** 
Tobin’s Q 1.67 1.55 1.74 1.86 7%** -4% -11%*** 
Leverage 0.95 0.53 0.57 0.48 44%*** 40%*** 49%*** 
Capital Expenditure 0.06 0.05 0.05 0.05 17%*** 17%*** 17%*** 
ROA 0.01 0.00 -0.01 -0.03 100%*** 200%*** 400%*** 
Sales Growth 0.26 0.23 0.25 0.31 12%*** 4%** -19%*** 
N (Firm-years) 330,790 122,546 118,264 53,456       
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Table 2 
Testing MCAR 

 
The table presents the missing completely at random test for the predictability of unreported innovation. The 
test is based on Little (1988) test for MCAR. Columns (1)-(4) World present the results for all countries in the 
sample. Columns (5)-(7) present the results for the US only. D.o.F. is the number of degrees of freedom, Prob>	82 
is the probability of the null hypothesis that the data is MCAR. Variable definitions are presented in Table A1. 
 
 

 World US 
 (1) (2) (3) (4) (5) (6) (7) 
R&D($value) X X X X X X X 
Num. Patent Appl. X X X X X X X 
Ln(Total Assets)  X X X  X X 
PPE   X X  X X 
Leverage   X X  X X 
CapEx   X X   X 
ROA    X   X 
Sales Growth    X   X 
82 dist. 297 7,431 25,062 42,971 6,359 9,857 22,889 
D.o.F. 2 9 87 326 5 23 180 
Prob>	82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 3 
Predictability of Unreported R&D 

 
The table presents the OLS regression results for predictability of unreported R&D. Columns (1)-(4) World 
present the results for all countries in the sample. Columns (5)-(7) present the results for the US only. Standard 
errors are double clustered at firm and year level. T-statistics are presented in brackets. Variable definitions are 
presented in Table A1. *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. Adj. R2 
is the adjusted R2. 
 
 

  World US 
  (1) (2) (3) (4) (5) (6) (7) 
Ln(Total Assets) -0.028*** -0.024*** -0.018*** -0.009** 0.033*** -0.001 -0.009** 
 (-12.17) (-10.29) (-11.24) (-2.67) (8.91) (-0.25) (-2.71) 
PPE 0.228*** 0.206*** 0.179*** 0.016* 0.237*** 0.309*** 0.049** 

 (13.83) (14.01) (17.31) (1.95) (6.44) (9.20) (2.24) 
Leverage -0.000 -0.000 0.000** -0.000 0.002** 0.001** 0.001*** 

 (-1.04) (-1.06) (2.31) (-0.11) (2.18) (2.32) (6.73) 
CapEx 0.004 0.003 -0.000 0.000 0.019 -0.159*** -0.015 

 (1.35) (1.22) (-0.62) (0.22) (0.31) (-3.02) (-1.18) 
ROA 0.182*** 0.172*** 0.128*** 0.022*** 0.178*** 0.166*** 0.039*** 

 (15.34) (14.66) (10.79) (3.79) (8.13) (10.19) (3.92) 
Sales Growth 0.011*** 0.006* -0.002 0.002** -0.006* -0.007** -0.001 

 (3.29) (1.79) (-1.11) (2.32) (-1.77) (-3.17) (-0.88) 
Stock Liquidity -0.006*** -0.006*** -0.005*** -0.000 -0.008*** -0.003*** -0.000 
 (-7.47) (-8.54) (-12.00) (-1.38) (-12.37) (-5.43) (-1.53) 
Patent Intensity -556.167*** -6.925 13.555 37.054** -573.734*** -21.605*** -19.704** 
 (-15.05) (-0.50) (1.08) (2.22) (-12.74) (-4.42) (-2.36) 
Country FE   Yes     
Industry FE  Yes Yes   Yes  
Year FE Yes Yes Yes Yes Yes Yes Yes 
Firm FE    Yes   Yes 

N  283,987  
 

283,987   283,987   281,243   64,386   64,386   63,086  
Adj. R2 0.14 0.23 0.38 0.81 0.23 0.53 0.93 
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Table 4 
Predicting Non-patent Seeking Firms 

 
The table presents OLS regressions of unreported USPTO patents and explanatory variables. The 
dependent variable is an indicator variable equal to 1 when a firm does not have USPTO patents, and zero 
otherwise. Columns (1)-(4) World present the regression results for all countries in the sample. Columns (5)-
(7) present the regression for US listed firms only. Standard errors are double clustered at firm and year level. 
T-statistics are presented in brackets. Variable definitions are presented in Table A1. *, **, and *** represent 
significance at the 10%, 5%, and 1% levels, respectively. Adj. R2 is the adjusted R2. 
 

  World US 
  (1) (2) (3) (4) (5) (6) (7) 
Ln(Total Assets) -0.018*** -0.014*** -0.031*** -0.010*** -0.018*** -0.036*** -0.021*** 

 (-15.49) (-13.42) (-23.36) (-8.03) (-4.97) (-12.75) (-5.04) 
PPE 0.109*** 0.149*** 0.117*** -0.007* 0.123*** 0.225*** -0.034* 

 (12.66) (15.24) (13.60) (-1.72) (5.68) (8.12) (-1.71) 
Leverage 0.000 0.000 0.000 -0.000 0.001* 0.000 -0.000 

 (0.62) (0.54) (1.06) (-1.08) (1.79) (0.71) (-1.23) 
CapEX 0.000 -0.000 -0.001 -0.000 0.071 -0.122** 0.025 

 (0.17) (-0.15) (-1.36) (-0.85) (1.55) (-2.40) (1.27) 
ROA 0.141*** 0.121*** 0.145*** 0.015*** 0.286*** 0.221*** 0.019* 

 (12.08) (13.15) (16.50) (3.17) (8.77) (8.25) (1.88) 
Sales Growth 0.003** 0.001 -0.005*** 0.002*** -0.004 -0.004** 0.005*** 

 (2.18) (0.73) (-4.62) (3.78) (-0.94) (-1.96) (3.07) 
Stock Liquidity -0.007*** -0.007*** -0.004*** -0.000** -0.007*** -0.005*** -0.001** 
 (-19.71) (-21.10) (-14.43) (-2.55) (-14.81) (-11.10) (-2.04) 
Patent Intensity -355.432*** -40.196** -30.734** -10.067* -518.481*** -44.799** -11.023 
 (-16.00) (-3.26) (-3.38) (-1.64) (-14.05) (-3.11) (-0.74) 
R&D Stock -0.000** -0.000** -0.000** -0.000 -0.000*** -0.000*** 0.000* 
 (-2.11) (-2.13) (-2.25) (-1.12) (-6.37) (-4.71) (1.78) 
Country FE   Yes     
Industry FE  Yes Yes   Yes  
Year FE Yes Yes Yes Yes Yes Yes Yes 
Firm FE    Yes   Yes 
N 281,763 281,763 281,763 278,999 64,383 64,383 63,086 
R2 0.11 0.16 0.26 0.76 0.18 0.32 0.77 
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Table 5 
Recovered R&D and Imputed Unreported R&D 

 
The table presents the Recovered R&D (in the years t-1 and t-2 from switch year) statistics and its 
comparison with different imputation methods. Panel A presents the comparison of Recovered R&D, Zero 
R&D, and positive R&D firm characteristics. Panel B presents the comparison of Recovered R&D with 
different imputation methods. Recovered R&D is the recovered R&D expenditure as reported in 10-K filings, 
its t-stat presents its difference from 0. Imputed R&D (Industry Avg.) is the average industry expenditure (two-
digit) for the observations that are recovered, Imputed R&D MI (Full Sample) is the multiply imputed R&D 
using only the Lasso variables: ln(total assets), stock liquidity, and industry patent intensity, by industry (two-
digit) for the complete sample, Imputed R&D MI (Sub Sample) is the multiply imputed R&D using the same 
MI model on the restated R&D sub sample and the industry and size matched peers. “Diff.” is the difference 
between Recovered R&D and imputed R&D. t-stat. represent the t-statistic for the difference between 
Recovered R&D an imputed R&D. Panel C shows the rank correlation among text-based innovation, 
patent applications (USPTO only and PATSTAT), R&D expenditure, and multiple imputation. *, **, and 
*** represent significance at the 10%, 5%, and 1% levels, respectively. 
 
Panel A. Recovered R&D and R&D Firms 
 

 Recovered 
R&D 

Zero 
R&D Diff. 

Positive 
R&D Diff. 

R&D ($ value) 6.69 0.00 6.69*** 112.76 -106.07*** 
R&D Expenditure 0.87 0.00 0.87 0.34 0.53 
Ln(Total Assets) 3.60 4.84 -1.24*** 4.69 -1.09*** 
ROA -3.11 -2.81 -0.30 -0.70 -2.41 
PPE 0.20 0.30 -0.10*** 0.18 0.02*** 
Sales growth 15.31 1.54 13.77 1.49 13.82 
Capex 0.06 0.06 -0.01 0.05 0.01 
Leverage 2.61 6.74 -4.13*** 1.81 0.80 

 
 
Panel B. Comparison with Imputation 
 

Variable Mean St. Dev. R&D Diff. t-stat. 

Recovered R&D 6.91 24.24     8.84 
Imputed R&D (Industry Avg.) 77.86 92.13 6.91 -70.95 -23.19 
Imputed R&D MI (Full Sample) 6.36 242.75 6.91 0.55 0.07 
Imputed R&D MI (Sub Sample) 8.66 245.55 6.91 -1.74 -0.22 

 
Panel C. Rank Correlation MI and Text-based Innovation 
 

  Text-based 
Innovation 

Text-based 
Negative Innovation 

Patent USPTO 0.22*** 0.17*** 
Patent PATSTAT 0.21*** 0.15*** 
R&D 0.26*** 0.29*** 
Imputed R&D MI Full Sample 0.30*** 0.27*** 
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Table 6 
Simulation Based on the Empirical Distribution from Compustat Data 

 
This table provides the evaluation statistics, bias (relative bias over true parameter) and root mean squared error (RMSE) for the simulation based on the 
empirical distribution from Compustat (US) data, as described in section 5.1. The empirical distribution is from the panel of 783 firms with non-missing 
information for all variables except R&D. The methods evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation with industry 
mean, two-digit SIC code (ImpMean), inverse probability weighting (IPW), Heckman procedure (Heckman), and multiple imputation (MI). MI uses total 
assets, stock liquidity, industry patent intensity identified using Lasso analysis in the regression and is estimated using MCMC with 200 iterations for 
convergence. The regressions for imputation with zero and industry mean include a dummy variable for the imputed observations. Absolute average 
represents the average of the absolute bias across all variables. We present results for three missingness mechanisms: missing completely at random (MCAR) 
in Panel A, missing at random (MAR) in Panel B, and missing not at random (MNAR) in Panel C. Variable definitions are presented in Table A1. We 
generate missingness R&D for 50 and 70% of the sample. We conduct 500 simulations. 
 

  Missing 70%  Missing 50% 

  LD 
Imp 
Zero 

Imp 
Mean IPW Heckman MI  LD 

Imp 
Zero 

Imp 
Mean IPW Heckman MI 

 
Panel A. MCAR 

 
Bias R&D 0.84 -0.58 -0.48 0.76 0.80 -0.04  0.67 -0.52 -0.47 0.73 0.68 -0.19 
 Ln(Total Assets) 1.42 -0.23 -0.22 18.00 18.11 0.01  0.86 -0.34 -0.33 18.00 18.11 -0.18 
 Tobin’s Q 1.18 0.15 0.13 0.40 0.10 0.07  0.73 0.10 0.09 0.35 0.08 0.03 
 Leverage 0.24 -0.02 -0.02 0.82 0.75 0.03  0.20 -0.02 -0.01 0.81 0.69 0.02 
 ROA 0.44 -0.01 -0.01 1.23 1.19 0.15  0.39 -0.01 -0.01 1.20 1.04 0.09 
 Avg. Abs. Bias 0.83 0.20 0.17 4.24 4.19 0.06  0.57 0.19 0.18 4.22 4.12 0.10 
                 
RMSE R&D 0.01 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 
 Ln(Total Assets) 0.02 0.01 0.01 0.19 0.19 0.01  0.02 0.01 0.01 0.19 0.19 0.01 
 Tobin’s Q 0.01 0.01 0.01 0.01 0.01 0.01  0.01 0.01 0.01 0.01 0.01 0.01 
 Leverage 0.08 0.03 0.03 0.15 0.13 0.03  0.06 0.03 0.03 0.14 0.12 0.03 
 ROA 0.13 0.04 0.04 0.22 0.20 0.05  0.10 0.04 0.04 0.19 0.17 0.05 
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Panel B. MAR  

Bias R&D 1.09 -0.66 -0.54 4.60 -19.52 -0.17  0.84 -0.38 -0.26 3.63 -23.51 0.00 
 Ln(Total Assets) 1.43 -0.32 -0.28 62.02 12.88 -0.03  1.00 -0.18 -0.16 62.21 26.46 0.05 
 Tobin’s Q 1.25 0.24 0.24 2.68 -4.33 0.12  0.93 0.06 0.04 1.40 -17.88 0.02 
 Leverage 0.42 -0.04 -0.04 3.57 -0.67 -0.06  0.22 -0.03 -0.03 2.67 -0.71 0.00 
 ROA 0.86 -0.04 -0.04 5.10 1.89 0.09  0.43 -0.04 -0.04 4.49 5.53 0.06 
 Avg. Abs. Bias 1.01 0.26 0.23 15.59 7.86 0.09 

 
0.69 0.14 0.11 14.88 14.82 0.03 

                 
RMSE R&D 0.01 0.00 0.00 0.02 0.33 0.00  0.00 0.00 0.00 0.01 0.30 0.00 
 Ln(Total Assets) 0.02 0.01 0.01 0.64 0.94 0.01  0.02 0.01 0.01 0.64 0.90 0.01 
 Tobin’s Q 0.02 0.00 0.00 0.02 1.19 0.01  0.01 0.01 0.01 0.02 1.06 0.01 
 Leverage 0.12 0.04 0.04 0.61 2.97 0.04  0.06 0.04 0.04 0.46 2.90 0.03 
 ROA 0.22 0.05 0.05 0.78 4.25 0.06  0.11 0.05 0.05 0.68 4.32 0.05 

 
Panel C. MNAR 

  
Bias R&D 0.89 -0.55 -0.49 4.81 -30.91 -0.21  0.64 -0.55 -0.52 3.61 -16.35 -0.15 
 Ln(Total Assets) 1.31 -0.18 -0.18 61.87 -2.98 0.09  0.96 -0.26 -0.25 62.06 1.27 -0.04 
 Tobin’s Q 1.57 0.40 0.40 3.17 -33.98 0.29  0.89 0.31 0.30 2.07 -7.09 0.26 
 Leverage 0.36 -0.08 -0.08 3.51 -5.10 -0.10  0.20 -0.06 -0.06 2.63 -1.56 -0.03 
 ROA 0.83 -0.07 -0.07 5.06 -0.46 0.05  0.45 -0.06 -0.06 4.21 -0.17 0.05 
 Avg. Abs. Bias 0.99 0.25 0.24 15.68 14.69 0.15  0.63 0.25 0.24 14.92 5.29 0.10 
                 
RMSE R&D 0.01 0.00 0.00 0.02 0.38 0.00  0.00 0.00 0.00 0.01 0.35 0.00 
 Ln(Total Assets) 0.02 0.01 0.01 0.64 0.96 0.01  0.02 0.01 0.01 0.64 0.92 0.01 
 Tobin’s Q 0.02 0.01 0.01 0.03 1.29 0.01  0.01 0.01 0.01 0.02 1.17 0.01 
 Leverage 0.11 0.04 0.04 0.61 2.87 0.04  0.06 0.04 0.04 0.45 2.62 0.04 
 ROA 0.21 0.04 0.04 0.78 4.34 0.05  0.11 0.05 0.05 0.64 4.84 0.05 
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Table 7 
Imputation Effect on Empirical Inference 

 
This table replicates the results in Fama and French (2002) using different imputation methods and two-
way fixed effects. We present the results of a contemporaneous regression with two-way fixed effects:  
!!
"!
= "# + "$ %!"! + "&

'(!
"!
+ ") *+!"!

+ ",$%%- + ". /*!"!
+ "0ln	(*-) + ,-.  “ImpZero” presents the result for the 

sample with imputation with zero and an indicator variable, “LD” presents the results for listwise deletion, 
“MI” presents the results for multiple imputation implemented using all the variables in the regression in 
the imputation, “MI Lasso” presents the results for multiple imputation implemented using all the variables 
in the regression and the Lasso variables stock liquidity and industry patent intensity in the imputation, 
“Pseudo RD” presents the result using pseudo R&D as an explanatory variable, and “An. Innov.” presents 
the results for the analyst coverage based innovation variable (Bellstam et al., 2020). The dependent variable 
is book leverage !!"! at time T.  #!"!	 is the market to book ratio, $%!"! 		is earnings before interest and taxes as a 

proportion of total assets, &'!"!
  is depreciation as a proportion of total assets, (&!"!

  is the R&D expenses as a 
proportion of total assets, $%%- is an indicator variable equal to 1 if R&D expenditure is missing and has 
been imputed with zero, and zero otherwise, Pseudo R&Dt is an indicator variable equal to 1 if a firm applies 
for a patent in PATSTAT and has no reported R&D, and zero otherwise, An. Innov.t is the firm analyst-
based innovation measure from (Bellstam et al., 2020), and ln	(*-) is the natural logarithm of total assets. 
Non-dividend payers include firms that do not pay dividend in year T-1. Panel A presents the results for 
the dividend paying firms and Panel B for the non-dividend paying firms. The sample period is 1965-1999. 
Standard errors are double clustered. 
 
Panel A. Dividend Payer Firms  
 

Variable Imp 
Zero LD MI MI 

Lasso 
Pseudo 
R&D 

Text-based 
Innov. 

  (1) (2) (3) (4) (5) (6) 
Intercept 0.305*** 0.344*** 0.366*** 0.368*** 0.300*** 0.246*** 
 

(22.62) (19.83) (56.52) (55.24) (22.13) (3.94) 
  

 

-0.001 -0.001 0.001 0.001 0.000 -0.006 

(-0.15) (-0.47) (0.40) (0.60) (-0.10) (-1.29) 
  

 

-0.158** -0.215** -0.184** -0.192 -0.157 -0.628 

(-1.99) (-2.66) (-2.07) (-2.17) (-1.99) (-3.91) 
  

 

-1.076*** -0.059 -1.057*** -1.048*** -1.049*** -0.797*** 

(-6.12) (-0.30) (-10.67) (-10.56) (-6.05) (-2.77) 
RDDt 0.070*** 

   
0.075*** 

 
 

(11.96) 
   

(12.35) 
 

  

 

-0.290*** -0.435*** 0.081*** 0.033 -0.290*** 
 

(-2.71) (-4.54) (3.91) (1.48) (-2.72) 
 

Pseudo R&Dt 
    

-0.098*** 
 

    
(-12.43) 

 

An. Innov.t 
     

-0.009*      
(-1.78) 

  0.041*** 0.029*** 0.038*** 0.038*** 0.042*** 0.048*** 
 (29.95) (13.61) (96.36) (95.10) (30.14) (6.89) 
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Panel B. Non-dividend Payer Firms 
 

Variable Zero Delete MI MI 
Lasso 

Pseudo 
R&D 

Text-based 
Innov. 

  (1) (2) (3) (4) (5) (6) 
Intercept 0.325*** 0.394*** 0.376*** 0.381*** 0.323*** 0.242 
 

(4.70) (20.07) (6.74) (7.05) (4.66) (1.11) 
  

 

0.027 -0.004*** 0.028** 0.029*** 0.027 -0.008 

(1.32) (-3.24) (2.24) (2.30) (1.32) -1.40 
  

 

-0.517*** -0.301*** -0.139 -0.136 -0.517*** -0.404 

(-3.15) (-4.77) (-0.54) (-0.52) (-3.14) -1.56 
  

 

0.691 1.984*** 0.636* 0.651* 0.692 1.725* 

(1.29) (7.96) (1.66) (1.70) (1.29) 1.84 
RDDt 0.079*** 

   
0.082*** 

 
 

(4.61) 
   

(4.73) 
 

  

 

-0.702*** -0.335*** 0.955*** 0.962*** -0.701*** 
 

(-2.83) (-3.33) (3.45) (3.43) (-2.83) 
 

Pseudo R&Dt 
    

-0.134*** 
 

    
(-6.03) 

 

An. Innov.t 
     

-0.095***      
(-5.50) 

  0.032*** 0.013** 0.022*** 0.024*** 0.033*** 0.042 
 (4.54) (2.60) (4.98) (5.35) (4.62) (1.60) 
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Table 8 
New Products, Patents, and Imputation Methods 

The table presents an analysis of new product announcements, patents, and imputation methods for firms 
with different combinations of products and patents. Panel A presents the innovation (R&D and patents) 
and new product characteristics. New product announcement data is from (Mukherjee et al., 2016) and 
patents are based on USPTO data. New products include the average returns for all new product 
announcements and major new products includes the number of new products in the 75th percentile of 
returns. Panel B presents the comparison of single and multiple imputation methods for patents with 
different product announcements. Single imputation includes: imputation with zero (Impute 0), and 
imputation with the two-digit industry average (Impute Industry Average). MI M1 presents the multiply imputed 
USPTO patents using the Lasso variables: ln(total assets), stock liquidity, R&D stock, and industry patent 
intensity from PATSTAT patents and MI M2 is the same as M1 with the addition of ROA, PPE, capital 
expenditure, sales growth, and leverage. Column (1) presents the information for the subsample with no 
USPTO patents and with product announcements; Column (2) presents the information for the subsample 
with no USPTO patents and no product announcements; Column (3) presents the information for firms 
with USPTO patents and product announcements; and Column (4) presents the information for firms with 
USPTO patents and no new product announcements. Diff. presents the difference between Columns (1) 
and (4), and t-stat. present the t-statistic for the difference. 
 
Panel A. Patents and New Products 

  

No 
Patents + 
New 
Products 

No 
Patents + 
No New 
Products 

Patents + 
New 
Products 

Patents + 
No New 
Products 

Diff. t-stat. 

  (1) (2) (3) (4) (5) = (1)-(4)   

Obs. (% of Sample) 5.71% 75.58% 3.10% 13.83%   

R&D ($ mio) 85.72 32.05 285.20 148.39   

R&D (% of report) 56.79% 39.12% 91.38% 85.31%   

Number of Patents 0.00 0.00 47.87 32.07   

New products 0.07 0.00 0.13 0.00 0.07 40.18 
Major New Products 0.79 0.00 1.60 0.00 0.79 42.02 

 
Panel B: Compare Imputation Method: Imputed Patents 

 
No 
Patents + 
New 
Products 

No 
Patents + 
No New 
Products 

Patents 
+ New 
Products 

Patents 
+ No 
New 
Products 

Diff. t-stat 

  (1) (2) (3) (4) (5) = (1)-(4)   

Single Imputation 

Impute 0 0.00 0.00 47.87 32.07 -32.07 -21.87 
Impute Industry Average 24.54 28.74 47.87 32.07 -7.53 -4.00 
Multiple Imputation 
Imputed Patents MI M1 29.38 11.98 47.87 32.07 -2.68 -1.26 
Imputed Patents MI M2 30.50 10.28 47.87 32.07 -1.57 -0.73 
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Figure 1 

Ranking Innovative Firms  
The figure shows the rank of innovative firms for S&P 500 using R&D and Text-Based Analysis. The figure 
shows innovation ranks based on the R&D expenditure imputed with zero for unreported R&D (Imp Zero), 
Text-based innovation measure (Text-based), and Multiple Imputation (MI). Firms with reported R&D are 
shown in light orange, and those with unreported R&D as red.  
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Figure 2 
Bias From Deleting Firms Without Reported Innovation 

 
This figure presents the bias of the R&D coefficient for listwise deletion (LD) and multiple imputation (MI) 
across different missingness levels. The simulation is based on the empirical distribution of the panel of 783 
firms with non-missing information for all variables except R&D. MI uses all the variables in the regression 
in Section 5.1 and is estimated using MCMC with 200 iterations for convergence. We present results for 
data missing at random (MAR). We conduct 500 simulations. 
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Figure 3 
Imputation of Missing Patents 

 
This figure presents the t-statistics of the comparison of years with only non-USPTO patents for US firms 
with different imputation methods. Industry is the difference between non-USPTO patents and industry 
patents defined as the average industry expenditure for the observations the year with non-USPTO patents 
only, M1 is the multiply imputed non-USPTO patents using ln(total assets), ROA, PPE, capital expenditure, 
sales growth, and leverage by industry (two-digit), M2 is the multiply imputed non-USPTO patents using 
the same model as M1 without sales growth and leverage as conditioning information, M3 is the multiply 
imputed non-USPTO patents using the same model as M1 with the addition of R&D expenditure as 
conditioning information, M4 is the multiply imputed non-USPTO patents using the Lasso variables ln(total 
assets), stock liquidity, industry patent intensity, and stock R&D, M5 is the multiply imputed non-USPTO 
patents combining models M1 and M5. 
 

 
 
 
 
 
 
 
 
 
 
  

-16

-12

-8

-4

0
Industry M1 M2 M3 M4 M5



	
	

60 

Appendix 
 

Table A1  
Variable Definitions 

 
This table shows the variable definitions. 
 

Variable Names  Variable Definitions Code 
R&D Expenditure  R&D expenditure divided by total assets XRD/AT 
Report R&D  Indicator variable: 1 if a firm reported zero 

or positive R&D expenditure; 0 otherwise 

 

PPE  Net property, plant, and equipment 
divided by total assets 

PPENT/AT 

Tobin’s Q Tobin’s Q, measured as market value of 
equity divided by total assets 

MKTVAL/AT 

Leverage  Total liabilities divided by total assets LT/AT 
Ln(Total Assets) Natural log of total assets Ln(AT) 
Capital Expenditure  Capital expenditure divided by total assets CAPX/AT 
ROA  EBIT divided by total assets EBIT/AT 
Sales Growth Annual sales growth  (Salet-Salet-1)/ Salet-1 
HH Index Herfindahl industry concentration index  
No. of Patent Applications Total number of patent applications 

 

No. of Patents Granted Total number of patents granted 
 

Citations 
Liquidity 
 
 
 
 
Patent Intensity 

Total number of citations per patent 
Yearly sum of daily trading volume in 
USD 
 
 
 
Number of PATSTAT patents per total 
assets for industry, using two-digit SIC 
across countries, unless specified otherwise 

 
PRC*VOL (for US-
Stocks), PRCCD*CS
HTRD*Exchange 
Rate (for non-US 
stocks)  
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Table A2 
Simulation Based on the Empirical Distribution from Compustat Data 

 

This table provides the evaluation statistics, bias (relative bias over true parameter) and root mean squared error (RMSE) for the simulation based on the 
empirical distribution from Compustat (US) data, as described in section 5.1. Bias presents the average of the absolute bias across all five variables and RMSE 
presents the average RMSE across the five variables. The empirical distribution is from the panel of 783 firms with non-missing information for all variables 
except R&D. The methods evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation with industry mean, two-digit SIC code 
(ImpMean), inverse probability weighting (IPW), Heckman procedure (Heckman), and multiple imputation (MI). The regressions for imputation with zero 
and industry mean include a dummy variable for the imputed observations. MI is spec uses all the variables in the regression and is estimated using MCMC 
with 200 iterations for convergence. We present results for three missingness mechanisms: missing completely at random (MCAR), missing at random (MAR), 
and missing not at random (MNAR). Panel A presents the results for the missingness regression which includes the lasso variables. Panel B presents the results 
with the MI specification in Panel A as well as includes the Lasso variables in the Sales growth regression. Panel C presents the Double Lasso results. Variable 
definitions are presented in Table A1. We generate missingness R&D for 50 and 70% of the sample. We conduct 500 simulations. 
 

   Missing 70%    Missing 50%  

  LD 
Imp. 
Zero 

Imp. 
Mean IPW Heckman MI    LD 

Imp. 
Zero 

Imp. 
Mean IPW Heckman MI  

                              
Panel A. Missingess Regression with Q, A, V, and PI 

                             
MCAR Bias 0.80 0.24 0.22 3.69 3.67 0.11   0.63 0.16 0.13 3.42 3.36 0.05 

 RMSE 0.05 0.02 0.02 0.09 0.09 0.02   0.03 0.02 0.02 0.07 0.07 0.02 
MAR Bias 1.02 0.13 0.12 20.22 118.27 0.10   0.63 0.17 0.15 17.43 100.29 0.07 

 RMSE 0.07 0.02 0.02 0.53 2.94 0.02   0.04 0.02 0.02 0.45 2.87 0.02 
MNAR Bias 0.98 0.13 0.12 11.96 67.10 0.11   0.58 0.18 0.15 10.18 59.42 0.08 

 RMSE 0.07 0.02 0.02 0.26 2.27 0.02   0.03 0.02 0.02 0.25 2.05 0.02 
                              

Panel B. Missingess Regression with Q, A, V, and PI and Sales growth regression with V and PI 
                              
MCAR Bias 0.86 0.26 0.24 3.74 3.75 0.17   0.60 0.23 0.15 3.52 3.48 0.08 

 RMSE 0.05 0.02 0.02 0.09 0.09 0.02   0.04 0.02 0.02 0.07 0.08 0.02 
MAR Bias 1.10 0.25 0.23 18.96 100.69 0.09   0.61 0.18 0.17 16.26 98.45 0.06 

 RMSE 0.08 0.02 0.02 0.48 2.73 0.02   0.04 0.02 0.02 0.39 2.50 0.02 
MNAR Bias 0.99 0.13 0.11 11.49 61.56 0.14   0.60 0.17 0.14 9.93 52.77 0.05 

 RMSE 0.07 0.02 0.02 0.29 1.86 0.02   0.03 0.02 0.02 0.24 1.76 0.02 
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Panel C. Double Lasso 

                              
MCAR Bias 0.77 0.24 0.22 3.77 3.74 0.08   0.60 0.21 0.19 3.59 3.47 0.09 

 RMSE 0.05 0.02 0.02 0.09 0.09 0.02   0.04 0.02 0.02 0.07 0.07 0.02 
MAR Bias 0.66 0.18 0.15 15.51 5.76 0.05   0.48 0.19 0.17 16.46 4.50 0.09 

 RMSE 0.03 0.02 0.02 0.45 0.40 0.02   0.02 0.02 0.02 0.43 0.35 0.02 
MNAR Bias 0.63 0.24 0.20 10.00 3.58 0.07   0.49 0.20 0.18 10.08 3.34 0.06 
  RMSE 0.03 0.02 0.02 0.29 0.24 0.02   0.02 0.02 0.02 0.25 0.18 0.02 
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Table A3 
Simulation Based on Simulated Data 

 
This table provides the evaluation statistics, bias (relative bias over true parameter) and root mean squared error (RMSE) for the simulation based on 
simulated data, as described in section 5.2. The methods evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation with industry 
mean, two-digit SIC code (ImpMean), inverse probability weighting (IPW), Heckman procedure (Heckman), and multiple imputation (MI). MI is estimated 
using MCMC with 200 iterations for convergence. The regressions for imputation with zero and industry mean include a dummy variable for the imputed 
observations. We present results for three missingness mechanisms: missing completely at random (MCAR) in Panel A, missing at random (MAR) in Panel 
B, and missing not at random (MNAR) in Panel C. We generate missingness in x1 for 50 and 70% of the sample. We conduct 500 simulations. 

 

  Missing 70%  Missing 50% 

  LD 
Imp 
Zero 

Imp 
Mean IPW 

Heck 
man MI  LD 

Imp 
Zero 

Imp 
Mean IPW 

Heck 
man MI  

 

Panel A. MCAR 
Bias !! 0.00 -0.19 -0.19 0.00 0.00 -0.01  0.00 -0.13 -0.13 0.00 0.00 -0.01 
 !" 0.01 0.28 0.28 0.01 0.01 0.01  0.00 0.19 0.19 0.00 0.00 0.00 
               

RMSE !! 0.11 0.21 0.21 0.08 0.11 0.09  0.06 0.07 0.07 0.06 0.06 0.05 
 !" 0.11 0.29 0.29 0.08 0.11 0.09  0.06 0.10 0.10 0.07 0.06 0.05 
                  

Panel B. MAR 
Bias !! -0.15 -0.23 -0.23 -0.16 -0.08 -0.08  -0.11 -0.16 -0.16 -0.11 -0.09 -0.05 
 !" -0.12 0.12 0.12 -0.12 -0.08 -0.05  -0.08 0.04 0.04 -0.07 -0.06 -0.04 
               

RMSE !! 0.17 0.24 0.24 0.18 0.17 0.10  0.13 0.17 0.17 0.13 0.12 0.08 
 !" 0.15 0.13 0.13 0.15 0.16 0.09  0.07 0.06 0.06 0.07 0.07 0.05 
                  

Panel C. MNAR 
Bias !! -0.17 -0.28 -0.28 -0.19 -0.13 -0.10   -0.13 -0.19 -0.19 -0.13 -0.11 -0.05 
 !" -0.16 0.14 0.14 -0.15 -0.13 -0.08  -0.11 0.04 0.04 -0.11 -0.10 -0.07 
               

RMSE !! 0.19 0.29 0.29 0.20 0.17 0.12  0.14 0.20 0.20 0.14 0.13 0.07 
 !" 0.17 0.12 0.12 0.17 0.16 0.10   0.13 0.06 0.06 0.13 0.12 0.08 
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Internet Appendix 
 

Internet Appendix I. Handling Missing Data 
 

This appendix provides a summary of the missing data problem and discusses several 
popular econometric approaches to handling missing data that are considered in this paper. With 
partially observed data, we can rarely be sure of the mechanism leading to such missing data. 
Therefore, we highlight some approaches to analyzing missing data under different mechanisms, 
which helps to establish inference robustness in the face of uncertainty about the missingness 
mechanism. In particular, we consider listwise deletion, deterministic imputation, inverse 
probability weighting, Heckman correction, and multiple imputation. For exposition simplicity (as 
in the main body of the paper), we consider the case where only one explanatory variable contains 
missing observations. Let !! be the dependent variable and "! be the explanatory variables with 
missingness. We have the linear relation:  

 
!! = $ + &"! +	(! ,				* = 1,… ,-.  (IA1) 
 

Let !! be a selection indicator where !! = 1 when $! is not missing and firm % is included in the 
regression. Otherwise, when !! = 0 firm % is deleted from the data. The validity of solutions to this 
problem depends on the missing mechanism, thus we first present the three missing mechanisms.  
 

1. Missing completely at random (MCAR):  
 

/(1 = 0|!, ", 4) = /(1 = 0). 
 

This means that the missing probability does not depend on any random variables.  
 

2. Missing at random (MAR): The probability of missing can be formulated by: 
 

/(1 = 0|!, ", 4) = /(1 = 0|4). 
 

In other words, the probability of missingness only depends on the set of observed variables 4, 
but not on the missing variable itself nor on unobservables.  
 

3. Missing not at random (MNAR): the missing mechanism is neither MAR nor MCAR. For 
example, the missing mechanism depends on the value of $ itself, or on unobserved 
variables, e.g., high-income individuals do not participate in surveys related to income.  

 
 
Effects of Listwise Deletion 

Listwise deletion only uses a subsample of observations, deleting those that contain missing 
values in the $-variable.1 This leads to estimating the following regression using the subsample of 
the data: 

 
1 We consider the univariate setup for simplicity. There might be other covariates of interest that drive the outcome 
variable but including them in the regression does not change the problem of deletion. 
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!! =	1!$ + &1!"! +	1!(! , (IA2) 

where !!$!  is now the explanatory variable and !!'! is the error term. The OLS (ordinary least 
squares) estimator is unbiased if ((!!'!$!) = 0, which can be implied by (('!|$! , !!) = 0. We can see 
that if MCAR holds and $! is exogenous, then (('!|$! , !!) = (('!|$!) = 0. Thus, deletion can lead to 
consistent estimates in the case of MCAR. However, if selection is driven by observed or even unobserved 
variables as in MAR and MNAR cases, (('!|$! , !!) ≠ 0 in general because '! can be correlated with !! 
even if one controls for $!, leading to biased estimates produced by deletion. 
 
 
Deterministic Imputation 
 

Another popular approach used in empirical studies is to impute the missing observations 
using various methods, and then treat the resulting data as given for further analysis. Frequently 
used deterministic imputation employs, e.g., zero, overall average, average from “similar” 
observations, or fitted values based on some pre-specified models. The validity of this method 
obviously depends on whether the specified imputation models are correct. If the imputation model 
perfectly coincides with the missing mechanism, then the resulting estimate using the imputed 
sample is consistent. On the contrary, misspecification of the imputation models can lead to 
potentially highly biased estimates because of the distortion of the variance-covariance matrices. 
For example, in our case, the missing R&D clearly does not equate to zero R&D in general (see 
results in Sections 3.2.2 and 3.3), and thus imputation using zeros leads to biased estimates when 
conditioning on R&D as an explanatory variable.  
 
 
Inverse Probability Weighting 
 

Inverse probability weighting assigns different weights to observed data points depending 
on their probability of being observed. Thus, the computation of IPW requires researchers to know 
the probability of being observed. Consider the case of MAR, where the probability of missing (or 
equivalently being observed) only depends on a set of observed variables /. Denote 6(4) ≡
0(! = 1|/) = 0(! = 1|1, /, $), then we can solve the missing data problem by: 

 
min
",$

	 ∑ < %!
&((!)

=*
!+, (!! − $ − &"!)-. 

 
In practice, 6(4) is often unknown except in some special cases, and thus we need to estimate it. 
To this end, we can regress the selection indicator 1	on 4 using flexible binary choice models, such 
as logit or probit, or even nonparametric models, and obtain the estimated selection probability 
(or alternatively called the propensity score)  6̂(4).  
 

 
Heckman Correction for Selection Bias  
 

We know from (IA2) that the OLS estimator  23 is biased because ((1!|!! = 1, $!) = 4! +
2$! + (('!|$! , !! = 1), and (('!|$! , !! = 1) ≠ 0 in general. Heckman’s method assumes that the 
missing mechanism is determined by the following model: 
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1!
∗ = @4! +	A! ,				* = 1,… ,-, (IA3) 

 
where 1!∗ is the latent variable associated with 1!, i.e. 1! = 1 if 1!∗ > 0 and 1! = 0 if 1!∗ ≤ 0. Further, 
assume that the error terms in (IA3) is normally distributed with variance D/- and correlated with 
(! in (IA1), and their covariance is E; 4 and " are both exogeneous. The Heckman procedure 
approximates the “omitted variable” ((!|"! , 1! = 1) by its consistent estimate and includes this 
proxy in the regression to correct for the bias. In particular, based on the joint distribution of A! 
and (!, one could write F((!|"! , 1! = 1) = D/EG(4!@) = HG(4!@), where G(4!@) is the inverse 
Mills ratio defined by: 
 

G(4!@) =
0(1(!2)

,13(1(!2)
= 0((!2)

3((!2)
 . 

  
Then we can rewrite the conditional expectation of !! given 4! and selection into the sample as: 
 

F(!!|4! , 1! = 1) = $ + &"! + HG(4!@). 
 

This leads to Heckman’s two-step procedure.  
 
Step 1: Estimate a probit regression P(1! = 1|4!) = Φ(4!@) using all - observations and obtain 
the estimate	@J . Then compute the inverse Mills ratio GK4!@JL.  
Step 2: Estimate the regression !! = $ + &"! + HG(4!@J) using OLS.  
 

The estimates $M, &N, and HM are consistent when 4 correctly includes all of the selection 
variables. The validity of Heckman’s procedure also heavily relies on the distributional assumptions 
of the two errors, A! and (!. For example, the deviation from the normality assumption of A! 	may 
negatively affect the performance of the Heckman’s procedure. Since H	captures the covariance 
between A! and (! and a nonzero correlation implies selection bias, we can test whether selection 
is exogenous (or equivalently MCAR) by testing whether HM = 0. For more extensions of Heckman’s 
procedure, see Wooldridge (2002, Chapter 17).  
 

 
Multiple Imputation  
 

Multiple imputation (MI) is essentially an iterative version of stochastic imputation, which 
aims at explicitly modeling the uncertainty/variability ignored by the deterministic imputation 
procedures. Instead of imputing in a single value, multiple imputation uses the (joint) distribution 
of the observed data to estimate the parameters of interest multiple times to capture the 
uncertainty/variability in this imputation procedure. A general multiple imputation procedure 
consists of three steps: 

Step 1. Imputation: Impute the missing data with their estimates and create a complete sample. 
Repeat this process multiple times. 

Step 2. Estimation: For each complete sample, estimate the parameters of interest. 
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Step 3. Pooling: Combine the parameter estimates obtained from each completed data set. 
 

The imputation method should be chosen depending on the type of variables with missing 
observations and the pattern of missingness. For example, MI with multivariate normal regressions 
can be applied to impute one or more continuous variables of arbitrary missing-value patterns; MI 
with chained equations employs a separate conditional distribution for each imputed variable, and 
is often used to impute a variable with finite and discrete support (e.g., binary, multinomial, or 
count variable). We illustrate the MI with multivariate normal regressions (MI_MVN). As all MI 
methods, MI with multivariate normal regressions analyses the data in three steps: imputation, 
estimation, and pooling. We discuss the three steps in turn. 

First, MI_MVN imputes the missing observations using data augmentation. In this case, 
we assume that the variable containing missing observations " is related with a set of (completely) 
observed variables 4 by: 

"! = O′4! + Q! ,				* = 1,… ,-, 
where Q!~-(0, D4-).	Denote S! = ("! , 4!). Data augmentation in this case is essentially an iterative 
Markov chain Monte Carlo (MCMC) procedure that iterates between two (sub-)steps, a 
replacement step and posterior step.  

• Replacement step: We replace the missing values of "! with draws from the conditional 
posterior distribution of "! given observed variables and the values of model parameters 
in this iteration. Particularly, for each iteration T, we can replace the missing observations 
by: 

"!
(5)	~	/<"!U4! , O(51,), D4

(51,)=,   for   * ∈ {*|1! = 1}. 
 

• Posterior step: We draw the new values of model parameters from their conditional 
posterior distribution given the observed data and imputed data from the previous 
replacement step.  

 
D4
(5)	~	/<D4	U4! , "!

(5)=,  and   O(5)	~	/<OU4! , "!
(5), D4

(5)=, 
 

where "!
(5) is the imputed value from iteration T if it is missing and the original value if 

non-missing.  
The conditional posterior distributions above are jointly determined from the prior distribution for 
the model parameter /(O, D4), e.g., uniform, Jeffreys, or ridge, and the assumed normal 
distribution of the data. These two steps (replacement and posterior) are iterated until a specified 
number of iterations or there is numerical convergence.   

Second, we estimate the regression of interest (IA1) with the imputed (pseudo-complete) 
data set using various approaches, e.g., OLS, IV. Since the imputation is conducted for multiple 
times, sD times, we obtain multiple estimates for the same regression parameter &. 

Third, we combine/pool the estimates (coefficients and standard errors) across all imputed 
datasets and obtain a single statistic for each parameter. The final estimated slope coefficient &N is 
simply an arithmetic mean of the corresponding estimate obtained from each of the imputed data. 
The variance of &N is obtained by the total variance formula and is written by the average estimated 
variance of coefficient estimates across D imputed datasets plus the sample variance of coefficient 
estimates based on D imputations.  
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A major advantage of multiple imputation over deterministic imputation is that the final 
statistics appropriately reflect the uncertainty caused by imputation. If the joint normality is a 
reasonable assumption and the specification of 4 is correct (i.e. MAR), MI_MVN produces 
consistent estimates. In practice, a safe strategy is to include all observables in 4 including ! to 
better approximate the posterior distribution. 
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Internet Appendix II. Simulation	Extensions 
 
A. Simulation of the with Generated Data 

 
We extend the benchmark simulation design by considering alternative specifications of the 

covariance matrix for the generated variables. We report results for the case of MAR with 70% 
missing observations in Table IA4 in Internet Appendix III, to conserve space. The ranking of the 
methods remains similar when considering MNAR and different levels of missingness.  

First, we consider how the correlation between errors influences the performance of the 
methods. We increase the correlation between A and ( to 0.6. When the correlation is higher, the 
bias and RMSE in &,	under all six methods deteriorates (relative to benchmark case reported in 
Table A3 Panel B). Heckman and MI continue to have among the lowest biasness and RMSE in 
&,, while deterministic imputation and MI exhibit the lowest biasness and RMSE in &-. Next, we 
consider how the correlation between the selection variables and variables of interest influences 
the estimates. We increase the correlation between 4, and ", to 0.6, and we find that an increase 
in correlation increases the biasness in &, under LD and IPW but not Heckman; while that of 
ImpZero, ImpMean and MI improved. On the other hand, the biasness in &-	improved for all six 
methods.  

Finally, we allow for correlation between the observed selection variables and the error in 
the main regression. We set the correlation between 4, and ( to 0.4, but we generate A 
independently from ( to avoid direct endogeneity in the selection equation. In this case, even 
though the two errors are uncorrelated, the correlation between selection variables and the error 
term in the main regression also significantly biases &, estimates under LD, ImpZero, ImpMean, 
and IPW. Heckman also performs poorly in this setting, because it is derived based on the joint 
distribution of ( and	A, but does not consider the correlation between ( and other observables. The 
&-biasness deteriorates significantly under LD, IPW and Heckman methods, while ImpZero and 
ImpMean exhibit smaller bias than under the baseline simulation. Overall, MI’s performance 
improves and produces the lowest bias in &, and &- estimates among all methods. Its performance 
is even better than in the benchmark case because the correlation between errors is zero, leading 
to more accurate stochastic imputation based on the joint distribution with the selection variables.   
 
B Patent Empirical Data-Based Simulation 

Patents and R&D expenditures may have different determinants and missingness levels. To 
understand the properties of the different methods for handling missing data in the patent setting, 
we replicate the empirical distribution-based simulation, with the USPTO patent data distribution. 
The empirical distribution is derived from a panel of 783 firms with non-missing information for 
all variables except USPTO patents for the period 1992 to 2012. We follow the same simulation 
procedure as described in Section 5.1. We analyze the case of 70% missing data, as Table 1 shows 
that patents exhibit very large levels of missingness. In addition, we only show the results for MAR 
and MNAR, since the analyses in Table 2 and Table 4 show that patent data is not missing completely 
at random. Table IA5 in Internet Appendix III presents the results of the simulation based on the 
patent empirical distribution. Under MAR, IPW and Heckman generate the highest biasness in 
coefficient estimates relative to both imputation and deletion. Focusing on MNAR, deterministic 
imputation and multiple imputation both perform better than listwise deletion, IPW and Heckman 
approaches.  
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Internet Appendix III. Tables and Figures 
 

Table IA1 
Relaxing Firm Constraints 

 
This table replicates the results of Table 1 Panel B on the difference between the univariate comparisons of the 
sample data with the full sample and innovation-variable based sample. “Full Sample” uses all available 
observations, “Report R&D” includes only observations that report R&D, “Report Patent” includes only 
observations that patent applications in any patent office, “R&D and Patent” includes only observations that 
have positive R&D and patent filings in the USPTO. Panel A only includes countries with more than 1,000 
listed firms in the sample, Panel B only firms from Industrial and Commercial Machinery (SIC 35) and Chemical 
and Allied Products (SIC 28) industries, and Panel C excludes small firms, i.e., firms that have total assets 
smaller than the 10th percentile of the total assets in the country sample. 
 
Panel A. Countries with more than 1,000 Listed Firms 
 

 Full Report Report R&D and  Differences 
  Sample 

(1) 
R&D 

(2) 
Patent 

(3) 
Patent  

(4) 
(5) =  

((1)-(2))/(1) 
(6)= 

((1)-(3))/(1) 
(7)= 

((1)-(4))/(1) 
Ln(Total Assets) 6.92 7.40 7.73 7.46 -7%*** -12%*** -8%*** 
PPE 0.29 0.25 0.23 0.20 14%*** 21%*** 31%*** 
Tobin’s Q 1.29 1.38 1.65 1.88 -7%*** -28%*** -46%*** 
Leverage 0.80 0.53 0.56 0.48 34%*** 30%*** 40%*** 
Capital Expenditure 0.06 0.05 0.05 0.05 17%*** 17%*** 17%*** 
ROA 0.01 0.00 -0.01 -0.03 100%*** 200%*** 400%*** 
Sales Growth 0.26 0.23 0.27 0.30 12%*** -4% -15%*** 

 
Panel B. SIC 25 and 38 Industries 
 

 Full Report Report R&D and  Differences 
  Sample 

(1) 
R&D 

(2) 
Patent 

(3) 
Patent  

(4) 
(5) =  

((1)-(2))/(1) 
(6)= 

((1)-(3))/(1) 
(7)= 

((1)-(4))/(1) 
Ln(Total Assets) 5.76 5.99 6.02 6.17 -4%*** -5%*** -7%*** 
PPE 0.19 0.17 0.16 0.16 11%*** 16%*** 16%*** 
Tobin’s Q 1.69 1.73 1.93 2.01 -2% -14%*** -19%*** 
Leverage 0.56 0.52 0.44 0.40 7% 21%* 29%*** 
Capital Expenditure 0.05 0.04 0.04 0.04 20%*** 20%*** 20%*** 
ROA -0.02 -0.03 -0.03 -0.02 -50%*** -50%** 0% 
Sales Growth 0.26 0.25 0.24 0.25 4% 8% 4% 

 
Panel C. Excluding Small Firms 
 

 Full Report Report R&D and  Differences 
  Sample 

(1) 
R&D 

(2) 
Patent 

(3) 
Patent  

(4) 
(5) =  

((1)-(2))/(1) 
(6)= 

((1)-(3))/(1) 
(7)= 

((1)-(4))/(1) 
Ln(Total Assets) 7.11 7.64 7.87 7.76 -7%*** -11%*** -9%*** 
PPE 0.29 0.25 0.24 0.21 14%*** 17%*** 28%*** 
Tobin’s Q 1.57 1.47 1.72 1.78 6% -10%* -13%*** 
Leverage 0.53 0.49 0.49 0.45 8%*** 8%*** 15%*** 
Capital Expenditure 0.06 0.05 0.05 0.05 17%*** 17%*** 17%*** 
ROA 0.03 0.03 0.02 0.01 0% 33%*** 67%*** 
Sales Growth 0.26 0.22 0.26 0.30 15%*** 0% -15%*** 
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Table IA2 
Predictability of Unreported Innovation with Lasso 

 
The table presents the OLS regression results for predictability of unreported innovation using only Lasso 
variables. Columns (1)-(4) World present the results for all countries in the sample. Columns (5)-(7) present the 
results for the US only. Panel A presents the results for unreported R&D, and Panel B presents the results for 
non-USPTO patent seeking firms. Standard errors are double clustered at firm and time level. T-statistics are 
presented in brackets. Variable definitions are presented in Table A1. *, **, and *** represent significance at the 
10%, 5%, and 1% levels, respectively. Adj. R2 is the adjusted R2. 
 
Panel A. Unreported R&D  
 

  World US 
  (1) (2) (3) (4) (5) (6) (7) 
Ln(Total Assets) -0.020*** -0.017*** -0.012*** -0.009*** 0.040*** 0.004* -0.014*** 

 (-10.20) (-8.31) (-7.86) (-3.54) (13.28) (1.73) (-4.40) 
Stock Liquidity -0.007*** -0.007*** -0.005*** -0.001*** -0.008*** -0.003*** -0.001*** 

 (-8.92) (-9.99) (-14.33) (-3.47) (-13.50) (-6.23) (-3.27) 

Patent Intensity -604.300*** -1.310 13.370 38.122** -700.176*** -19.498*** -17.045* 

 (-17.42) (-0.11) (1.06) (2.02) (-21.33) (-3.08) (-1.77) 

Country FE   Yes     
Industry FE  Yes Yes   Yes  
Year FE Yes Yes Yes Yes Yes Yes Yes 
Firm FE    Yes   Yes 
N 300,634 300,634 300,634 328,734.0 77,982 77,982 76,944 
Adj. R2 0.13 0.23 0.38 0.80 0.23 0.53 0.93 

 
Panel B. Non-USPTO Patent Seeking Firms 

 
Ln(Total Assets) -0.012*** -0.009*** -0.020*** -0.006*** -0.000 -0.023*** -0.013*** 

 (-11.62) (-9.41) (-19.28) (-6.88) (-0.08) (-9.67) (-4.03) 

Stock Liquidity -0.006*** -0.007*** -0.004*** -0.001*** -0.007*** -0.005*** -0.001*** 

 (-20.77) (-21.86) (-17.74) (-5.11) (-14.73) (-12.24) (-3.55) 

Patent Intensity -0.000** -0.000** -0.000** -0.000 -0.000*** -0.000** 0.000 

 (-2.09) (-2.10) (-2.22) (-1.14) (-3.22) (-2.60) (1.01) 

R&D Stock -368.647*** -30.191** -25.181*** -4.871 -554.522*** -47.131*** -0.239 

 (-17.34) (-2.57) (-3.23) (-0.90) (-18.37) (-3.72) (-0.02) 

Country FE   Yes     
Industry FE  Yes Yes   Yes  
Year FE Yes Yes Yes Yes Yes Yes Yes 
Firm FE    Yes   Yes 
N  327,997   327,997   327,997   326,067   77,958   77,958   76,926  

R2 0.09 0.15 0.24 0.76 0.15 0.32 0.78 
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Table IA3 
Recovered R&D and Imputed Unreported R&D 

 
The table presents the comparison of Recovered R&D with different imputation methods. Panel A presents 
the result for the MI estimated for the complete sample, Panel B present the results for the multiple 
imputation on the restated R&D sub sample and the industry and size matched peers. Panel C shows the 
correlation between text-based innovation measures and the full sample multiple imputation. R&D is the 
recovered R&D expenditure as reported in 10-K filings, MI R&D M1 is the multiply imputed R&D using 
ln(total assets), ROA, PPE, sales growth and leverage, by industry (two-digit), MI R&D M2 is the multiply 
imputed R&D using the same model as M1 with the addition of the lagged R&D as conditioning 
information. MI R&D M3 is the multiply imputed R&D using the same model as M1 with the addition of 
the Lasso variables: stock liquidity and industry patent intensity, MI R&D M4 is the multiply imputed R&D 
using the same model as M2 with the addition of the Lasso variables: stock liquidity and industry patent 
intensity. “Diff.” is the difference between Recovered R&D and imputed R&D. T-stats represent the t-
statistic for the difference between Recovered R&D an imputed R&D. *, **, and *** represent significance at 
the 10%, 5%, and 1% levels, respectively. 

 
  MEAN STD RD Diff. t-stat 

      
Panel A. R&D Full Sample 

            

MI R&D M1 17.19 334.17 6.91 -10.28 -0.97 
MI R&D M2 12.48 252.47 6.91 -5.56 -0.69 
MI R&D M3 17.95 334.12 6.91 -11.04 -1.04 
MI R&D M4 15.10 246.92 6.91 -8.19 -1.05 

            
Panel B. R&D Sub Sample 

            

MI R&D M1 17.20 340.49 6.91 -10.29 -0.93 
MI R&D M2 14.14 257.20 6.91 -7.23 -0.87 
MI R&D M3 19.09 337.75 6.91 -12.17 -1.12 
MI R&D M4 15.99 256.29 6.91 -9.07 -1.10 

 
Panel C. Correlation with Text-based Innovation 

 

  
Text-based 
Innovation 

Text-based Negative 
Innovation 

MI R&D M1 Full Sample 0.30*** 0.28*** 
MI R&D M2 Full Sample 0.29*** 0.26*** 
MI R&D M3 Full Sample 0.30*** 0.28*** 
MI R&D M4 Full Sample 0.30*** 0.26*** 
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Table IA4 
Robustness of Simulation based on Simulated Data 

 
This table provides robustness for the simulation based on simulated data, as described in section 5.2.3. The 
methods evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation with industry mean, 
two-digit SIC code (ImpMean), inverse probability weighting (IPW), Heckman procedure (Heckman), and 
multiple imputation (MI). The regressions for imputations using zero and the industry mean also include a 
dummy variable to denote the imputed observations. We present the bias (relative bias over true parameter) and 
root mean squared error (RMSE) for MAR for 70% missingness. In Panel A the correlation between η and ε is 
0.6, in Panel B the correlation between ", and /, is 0.6, in Panel C the correlation between !! and " is 0.4, but 
# is generated independently from " to avoid direct endogeneity in the selection equation. 
 

    LD 
Imp 
Zero 

Imp 
Mean IPW Heckman MI 

                
 Panel A. Large Correlation between Errors 
                
Bias 2" -0.20 -0.29 -0.29 -0.21 -0.11 -0.10 
 2# -0.18 0.08 0.08 -0.17 -0.13 -0.09 

        
RMSE 2" 0.21 0.30 0.30 0.23 0.18 0.11 

 2# 0.19 0.10 0.10 0.19 0.17 0.11 
                
 Panel B. Large Correlation between ",and 4, 
                
Bias 2" -0.16 -0.22 -0.22 -0.19 -0.08 -0.06 
 2# -0.11 0.10 0.10 -0.11 -0.07 -0.03 

        
RMSE 2" 0.20 0.25 0.25 0.22 0.20 0.11 

 2# 0.16 0.12 0.12 0.15 0.16 0.09 
                
 Panel C. Correlation between ",	and ε, no Correlation between Errors 
                
Bias 2" -0.27 -0.36 -0.36 -0.31 -0.12 -0.01 
 2# -0.23 0.05 0.05 -0.21 -0.17 0.02 

        
RMSE 2" 0.28 0.37 0.37 0.32 0.26 0.07 
  2# 0.24 0.08 0.08 0.22 0.26 0.09 
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Table IA5 
Patent Simulation Based on the Empirical Distribution of Data 

 
This table provides the evaluation statistics, bias (relative bias over true parameter) and root mean squared error 
(RMSE) for the simulation based on the empirical distribution from Compustat (US) and USPTO data. The 
empirical distribution comes from the panel of 783 firms with non-missing information for all variables except 
USPTO patents. The methods evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation 
with industry mean, two-digit SIC code (ImpMean), inverse probability weighting (IPW), Heckman procedure 
(Heckman), and multiple imputation (MI). MI uses all the variables in sample and is estimated using MCMC 
with 200 iterations for convergence. The regressions for imputation with zero and industry mean include a 
dummy variable for the imputed observations. Absolute average represents the average of the absolute bias across 
all variables. Variable definitions are presented in Table A1. We present results for two missingness 
mechanisms: missing at random (MAR) in Panel A and missing not at random (MNAR) in Panel B. We generate 
missingness in patents for 70% of the sample. We conduct 500 simulations. 
 

  LD 
Imp 
Zero 

Imp 
Mean IPW Heckman MI 

 
Panel A. MAR 

 
Bias Patent -14.77 -2.38 -2.88 16.86 -48.13 0.34 
 Ln(Total Assets) 21.85 1.64 3.33 62.00 -15.40 2.51 
 Tobin’s Q -7.95 1.47 1.13 -190.58 -238.28 1.23 
 Leverage -1.94 0.02 0.04 9.08 9.84 0.07 
 ROA 0.41 0.11 0.10 3.95 2.66 0.11 
 Avg. Abs. Bias 9.38 1.13 1.50 56.50 62.86 0.85 

        
RMSE Patent 0.00 0.00 0.00 0.00 0.00 0.00 
 Ln(Total Assets) 0.06 0.02 0.03 0.12 0.09 0.03 
 Tobin’s Q 0.03 0.02 0.02 0.41 0.52 0.02 
 Leverage 0.31 0.12 0.13 0.91 1.07 0.12 
 ROA 0.51 0.32 0.33 2.96 2.42 0.32 

 
Panel B. MNAR 

 
Bias Patent -15.14 -0.22 0.05 10.25 -23.99 1.26 
 Ln(Total Assets) 19.45 -1.00 -1.22 52.67 2.04 0.06 
 Tobin’s Q -7.58 -0.34 -0.23 -106.94 -136.07 -0.39 
 Leverage -1.84 0.03 0.02 4.07 3.65 0.06 
 ROA 0.43 0.01 -0.01 2.23 1.37 0.01 
 Avg. Abs. Bias 8.89 0.32 0.31 35.23 33.42 0.36 
        
RMSE Patent 0.00 0.00 0.00 0.00 0.00 0.00 
 Ln(Total Assets) 0.06 0.02 0.03 0.10 0.07 0.03 
 Tobin’s Q 0.03 0.02 0.02 0.23 0.30 0.02 
 Leverage 0.29 0.13 0.13 0.42 0.57 0.13 
 ROA 0.51 0.30 0.33 1.69 1.67 0.30 

 


